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A B S T R A C T   

In recent years, many airborne point clouds filtering methods have been developed. However, it is still chal
lenging for distinguishing ground and non-ground points in forested areas due to the rugged terrains, dense 
vegetation canopy and low-level penetration of laser pulses. To derive satisfactory filtering results, this paper 
proposed a mean shift segmentation morphological filter. In this method, the mean shift segmentation is used for 
acquiring object primitives to determine filtering window sizes automatically. The point clouds detrending is 
proposed for improving the adaptability towards sloped terrains. A point cloud shifting in x and y directions 
technique is developed to acquire more ground seeds for generating a more accurate trending surface. Finally, 
the filtered ground points by the progressive morphological filter are recovered by adopting the surface-based 
filtering strategy. The proposed method is tested and validated using 14 samples with different forested envi
ronments. Experimental results show that the proposed method can achieve the average total error of 1.11%. The 
kappa coefficients of all these 14 samples are larger than 90% and the average kappa coefficient is 96.43%. The 
average root mean square error (RMSE) of the proposed method is 0.63. All these indicators are the best when 
compared to some other famous filtering methods.   

1. Introduction 

Airborne light detection and ranging (LiDAR) is an advanced auto
matic high precision stereo scanning technology [1], which is an 
important technological revolution in surveying and mapping after 
global positioning system (GPS). Compared to traditional measurement 
techniques, LiDAR can obtain high-density point clouds with three- 
dimensional (3-D) coordinates in non-contact active means [2,3]. 
When acquiring field data, airborne LiDAR is less affected by external 
environments. Moreover, laser pulses can penetrate forest canopy to get 
topographic information [4,5]. Thus, airborne LiDAR has been widely 
used in forest inventory and management, such as forest vegetation 
parameters retrieval, above ground biomass estimation and carbon cycle 
analysis [6–10]. 

To realize all these above-mentioned forestry applications, one 
fundamental step is the filtering. Filtering is the process of separating 
ground points from non-ground points [11]. In the past two decades, 

many famous filtering methods have been proposed, which can be 
classified into four categories, including slope, morphology, surface and 
segmentation based approaches [12–14]. 

In the slope-based methods, terrain is assumed as a continuous sur
face. The points with larger slopes are determined as non-ground points 
[15]. Susaki (2012) improved this kind of method to make the slope- 
based methods be adaptive to abrupt terrains [16]. Generally 
speaking, the slope-based approaches perform well in flat terrains. 
However, when encountering sloped topography, the filtering results of 
this kind of methods are sensitive to the slope threshold settings [17]. 
The classical morphological filter was originally proposed by Kilian et al. 
(1996). In their method, morphological opening operation is involved 
[18]. Zhang et al. (2003) further improved this method, where the 
morphological windows are changed gradually to filter objects with 
different sizes [19]. However, this kind of methods is easy to flatten 
terrain details [20–24]. Moreover, the maximum morphological window 
that is crucial for filtering performance generally needs to be set 
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manually [5,25]. The surface-based methods realize filtering with the 
help of a rough interpolated surface. The rough surface can be generated 
using interpolators, such as thin plate spline (TPS) [26–29]. By calcu
lating residuals between points and the interpolated surface, filtering 
results can be achieved. The rough surface can also be built using 
triangular irregular network (TIN) [30–32]. Axelsson (2000) proposed a 
classical progressive TIN densification (PTD) filtering method. This 
method has been tested by Sithole and Vosselman (2004) to own the best 
performance [33]. However, the PTD method has difficulties in pro
cessing abrupt terrains and terrains with attached objects. To solve this 
problem, Cai et al. (2019) improved the PTD method by combing with 
another famous filtering method called as CSF (Cloth Simulation Filter) 
that is developed by Zhang et al. (2016) [34,35]. The segmentation- 
based methods can be seen as object-based filters. Point clouds are 
first segmented into several individual units before filtering. Then some 
traditional filtering methods can be adopted to filter these units instead 
of single points [17,36,37]. Obviously, this kind of methods can achieve 
greater efficiency. However, the filtering performances rely heavily on 
the segmentation results. 

Generally speaking, most filtering algorithms perform well in flat 
and simple sceneries [38–40]. However, when encountering steep 
landscapes with dense vegetation most filters present problems. On the 
one hand, there are less laser pulses that can reach the ground under the 
dense forest canopy. Less point clouds are hard to produce high preci
sion filtering results. On the other hand, most filters assume that the 
bare-earth surface is smooth and continuous [13]. Thus, some rugged 
forest terrains are easily misclassified as non-ground points. To obtain 
better filtering results in forested areas, some specific filters were 
developed for DTM extraction under forest canopy. Kraus and Pfeifer 
(1998) presented a forest filtering method based on linear prediction, 
which is one of the category of surface-based filters mentioned above 
[41]. In their method, a rough surface is built iteratively by means of a 
weighted linear least-square interpolator. In each iteration, the eleva
tion differences between the points and the rough surface are acquired. 
The points with negative elevation differences are set to high weights 
when generating the surface since these points are more likely ground 
points. Meanwhile, the points with positive residuals are assigned to low 
weights. The ground surface can be acquired keeping iterating the 

process mentioned above. Evans and Hudak (2007) proposed a multi
scale curvature classification (MCC) method for filtering in vegetation 
environments [42]. This method is also a surface-based filter. The sur
face is built by TPS interpolation. The non-ground points are filtered 
iteratively if their elevations exceed the curvature of the surface. In the 
method proposed by Vega et al. (2012) four steps are involved, including 
lowest points extraction, distinct object points removal, lower object 
points removal and ground points densification [43]. Maguya et al. 
(2013) developed an iterative method for obtaining digital terrain 
model (DTM) from point clouds in steep forested terrain [44]. In their 
method, point clouds are first portioned and then a section of the DTM is 
estimated with the help of a fitted surface. Experiments indicate that this 
method performs well in the steep terrains with low LiDAR point den
sities. Zhao et al. (2016) improved the traditional PTD method to cope 
with different forested terrains. The main advantage of this method is 
that more accurate initial ground seeds can be acquired using the 
morphological method [45]. Lim and Liu (2018) developed a novel 
morphological filter using voxels. Point clouds are first voxelized and 
then non-ground points are removed step by step using several con
straints [46]. Bigdeli et al. (2018) put forward a filtering approach for 
DTM extraction in the forest environment [47]. To make the interpo
lated surface more accurate, a modified invasive weed optimization 
method is developed. Montealegre et al. (2015) and Zhao et al. (2018) 
have compared several famous filtering methods in vegetation envi
ronments [48,49]. Montealegre et al. (2015) find that MCC method 
performs the best in the forest environment, which is in agreement with 
the conclusion made by Zhao et al. (2018). To improve the filtering 
performance in the rugged terrains with dense vegetation, Chen et al. 
(2020) developed a multi-level interpolation-based filter. In their 
method, more ground seeds can be acquired by adopting multi-scale 
morphological operations and robust z-score. Moreover, the residual 
threshold can be adaptive to different terrain environments [50]. 

However, all above mentioned methods are still challenging for 
accurately distinguishing ground and object points in forested areas due 
to the rugged terrains, dense vegetation canopy and low-level penetra
tion of laser pulses. This paper proposed a novel improved morpholog
ical filter for DTM extraction under forest canopy. The proposed method 
is expected to have strong robustness to different forested environments. 

Fig. 1. Flowchart of the proposed method.  
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Moreover, this method can remove non-ground points effectively while 
protecting terrain details. Compared with other filtering methods, this 
paper owns the following three main contributions: 

i Mean shift segmentation is used to determine the morphological 
filtering windows automatically, which enhances the robustness and 
automation for unknown environments. 

ii Point cloud detrending is proposed in this paper, which assures the 
adaptability of the filter achieving good filtering performance in 
forested areas with sloped terrains. 

iii A surface-based ground points retrieval scheme is combined with 
the progressive morphological filter, which can recover the filtered 
points on the protruding terrains as ground points, thereby protecting 
terrain details. 

In the following, Section 2 describes the principle of the proposed 
method. In Section 3, experiments are designed to test the performance 
of the proposed method. Results are presented and compared with some 
other famous filtering algorithms in Section 4, and finally, Section 5 
summarizes main conclusions. 

2. Methodology 

The flowchart of the proposed method is shown in Fig. 1. In general, 
the obtained point clouds always contain high and low outliers. These 
outliers, especially low outliers should be first removed since the points 
with lowest elevations are always assumed as ground points. This paper 
eliminates these low outliers using the morphological black top-hat 
(BTH) transformation presented by Li et al. (2017) [5]. The points 
with larger BTH results and fewer neighbors are low outliers. To 
determine the optimal maximum morphological filtering window 
automatically, this paper first obtains object primitives using mean shift 
segmentation. Then horizontal bounding box is calculated for each ob
ject primitive. The morphological filtering windows are set as the serials 
of sizes of horizontal bounding boxes. The benefits for doing this are 
twofold. On the one hand, the optimal maximum window size can be 
acquired. On the other hand, the number of morphological filtering it
erations can be reduced to improve implementation efficiency. To make 
the filtering method adaptive to complex forested environments, point 
clouds detrending is proposed by subtracting a trending surface gener
ated using radial basis function (RBF) interpolator with ground seeds. To 
acquire more ground seeds for generating an accurate trending surface, 
a point cloud shifting in x and y directions technique is developed. 
Finally, a surface-based ground points retrieval scheme is combined 
with the progressive morphological filter, which can recover the filtered 
points on the protruding terrains as ground points, thereby protecting 
terrain details. The proposed method mainly consists of the following 
four steps, including i Object primitive acquisition by mean shift 

segmentation, ii Horizontal bounding box calculation, iii Point cloud 
detrending, and iv Progressive morphological filtering. 

2.1. Object primitive acquisition by mean shift segmentation 

Mean shift is originally used for two-dimensional (2-D) image seg
mentation. It can realize image segmentation by constantly searching 
the local maximum of probability density function. In so doing, each 
point will converge to the mode through repeated iteration [51]. Points 
with the same or similar modes will be aggregated into the same class. 
By extending the 2-D kernel function to the 3-D kernel function, the 
mean shift method can be applied to point cloud segmentation [52]. 
Fig. 2 (a) and (b) illustrate the mean shift clustering process for 2-D and 
3-D points, respectively. 

In the mean shift method, mean shift vector Ms(vi) should be 
calculated first, which is defined as Eq. (1): 
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, n is the number of all the points. g(⋅) is the kernel 

function, which is defined as Eq. (2). h is the bandwidth, which is the 
only parameter involved in the mean shift segmentation. The bandwidth 
has an influence on the segmentation results. In general, the bandwidth 
should be set according to the specific tree crown sizes in the forest 
environments [53]. In this study, the mean shift method is used to 
segment object primitive for calculating the filtering window sizes. In
dividual tree does not need to be segmented very correctly. Thus, the 
bandwidth can be set as a constant roughly only if its value is a little 
larger than the crown sizes in the testing area. To make the mean shift 
segmentation easy to implement, this study set the bandwidth h as a 
constant, which is equal to 5 m in this paper. 
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As shown in Fig. 2, the mean shift vector always points in the di
rection where the probability density goes up. This process will be 
converged into a mode after several iterations. This procedure can be 
represented by Eq. (3). 

vt+1
i ←vt

i + Ms
(
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i

)
(3) 

When the variation of Ms
(
vt

i
)

in the last two iterations is less than a 
threshold, it indicates that the mean shift vector has converged to the 

Fig. 2. Mean shift clustering process for 2-D and 3-D points: (a) 2-D points; (b) 3-D points. h is the bandwidth.  
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mode. Points with the same or similar modes will be assigned the same 
category labels, thereby achieving object primitives. 

2.2. Horizontal bounding box calculation 

To most morphology-based filtering methods, filtering windows 
affect the filtering performance directly. Generally, window sizes need 
to be set empirically by experienced staffs. However, it will still be 
difficult when encountering different terrain environments [5]. In this 
paper, the filtering window sizes are determined automatically based on 
the horizontal bounding box calculation towards object primitives that 
obtained by the mean shift segmentation. In so doing, there will be no 
need to define window sizes. For forested environment, the dominant 
objects are vegetation. Thus, the obtained object primitives using mean 
shift method are mainly trees. However, some parts of bare-earth can 
also form object primitives. In the morphological filtering method, the 

window size should be larger than the largest object in the tested areas. 
In other words, the maximum filtering window for forested areas should 
be larger than the largest size of tree canopy. Therefore, bare-earth 
primitives should be first separated from tree primitives. Considering 
the fact that the elevations of points in the tree primitives generally vary 
greatly, bare-earth primitives can be detected according to the standard 
deviation of elevations of each primitive, which is defined as Eq. (4). 

std
(
Obji) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑k

j=1

(
Obji.zj − Obji.z

)2

k

√
√
√
√
√

(4)  

where Obji is the i-th object primitive, std(⋅) is its corresponding standard 
deviation. Obji.zj is the z coordinate of j-th point in the object primitive, 
while Obji.z is the mean z coordinate of the i-th object primitive. The 
primitives with smaller standard deviations will be detected as bare- 

Fig. 3. Horizontal bounding box calculation: (a) Bounding box of a single 3-D tree; (b) Horizontal bounding box.  

Fig. 4. The sketch map of highly rugged 
terrain and the generated trend surface. The 
red points represent ground points, while the 
blue points indicate non-ground points. The 
red points with excircles are the lowest 
ground seeds within the filtering window W. 
zpi is the original elevation; zpi

revised is the 
revised elevation; zpi

interpolated is the interpo
lated elevation. F(x, y) represents the trend
ing surface generated using RBF interpolator 
with ground seeds. (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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earth primitives and should not calculate their horizontal bounding 
boxes. 

As shown in Fig. 3 (a), each object primitive is first partitioned into 
grids at horizontal direction. The grid side is set to be 1 m in this paper. 
The horizontal bounding box can be calculated according to x and y 
coordinates of the points as shown in Fig. 3 (b). This procedure can be 
written as Eqs. (5) and (6). 

M = floor
(

max
(
Obji.x

)
− min

(
Obji.x

)

cellsize

)

+ 1 (5)  

N = floor
(

max
(
Obji.y

)
− min

(
Obji.y

)

cellsize

)

+ 1 (6)  

where M × N is the size of the horizontal bounding box, Obji.x and Obji.y 
are x and y coordinates of each point in the i-th object primitive. cellsize 
is the size of the grid, floor(Δ) indicates round down. 

2.3. Point cloud detrending 

Most morphological filtering methods cannot work well in the highly 
rugged terrains with steep slopes. This is because most points on the 
steep terrains own abrupt elevations. The results of these points after 
morphological top-hat transformation are generally larger than the 
filtering threshold. Thus, these abrupt terrain points are easily mis
classified as objects. Fig. 4 shows that the elevation of point p1 is obvious 
much higher than that of point p2. Ground point p1 will be filtered when 
using morphological operations. That’s why most morphology-based 
filtering methods conclude that morphological filters cannot protect 
terrain details well. 

To solve this problem, this paper conduct point cloud detrending 
with the help of a trending surface generated using ground seeds. As 
mentioned above, the filtering window size can be determined accord
ing to the mean shift segmentation results. This paper selects the lowest 
points within the filtering windows W as ground seeds. As shown in 
Fig. 4, the red points with excircles are the ground seeds. Then a 
trending surface is generated based on these ground seeds using a radial 
basis function (RBF) interpolator. The trending surface is defined as Eq. 
(7). 

F(x, y) =
∑n

i=1
λiϕ(‖p − pi‖ ) - δh (7)  

where λi is the coefficient, ϕ(⋅) is a Gaussian basis function, and ‖p − pi‖

represents the distance between points p and pi. In this paper, a constant 
height shift δh is added to make the built trending surface always lower 
than the observed surface. δh used here is to avoid the influence of 
interpolation fitting error when building the trending surface. As shown 
in Fig. 4, the ground seeds are generally sparse. When generating the 
trending surface based on these sparse ground seeds it is easy to cause 
fitting errors. As a result, some parts of the trending surface may be 
higher than the observed surface. Obviously, it is unreasonable. By 
subtracting the trending surface with a constant, it will be ensured that 
the trending surface is always lower than the observed surface. In 
practice, δh is set to 3 m. 

When the trending surface is generated, point cloud detrending can 
be realized by subtracting the elevation values of each point on the 
trending surface from their corresponding observed elevations. As 
shown in Fig. 4, zp1

revised, zp2
revised and zp3

revised are the revised elevations of 
points p1, p2 and p3. The revised elevations are obtained by subtracting 
the interpolated elevations (zp

interpolated) from their observed elevations 
(zp). That is, zp

revised = zp − zp
interpolated. Clearly, zp

interpolated can be calculated 

according to Eq. (7). In other words, zp
interpolated is equal to F

(
xp, yp

)
. As 

shown in Fig. 4, although zp1 is much higher than zp2 , zp1
revised is close to 

zp2
revised after point cloud detrending. It is because that zp1

interpolated is also 
much high than zp2

interpolatedas shown in Fig. 4. As a result, the revised el
evations of these two points are close after the observed elevations (zp) 
minus the interpolated elevations (zp

interpolated). Moreover, although non- 
ground point p3 is lower than ground point p2, after transformation 
zp3

revised is larger than zp2
revised. In so doing, we can try to make sure that 

object points are always higher than ground points, thereby reducing 
filtering omission errors in abrupt terrains. 

As shown in Fig. 4, the key for point clouds detrending is generating 
the trending surface. To build a precise trending surface, the ground 
seeds should be accurate and enough. From Fig. 4, it can be found that 
the ground seeds can be easily acquired by locating the lowest points 
within the filtering windows. However, the acquired ground seeds will 
be less if the window size is larger. Fewer ground seeds cannot generate 
an accurate trending surface especially when encountering sloped 
terrains. 

Fig. 5 (a) shows a sloped terrain which is covered by dense forests. To 
obtain ground seeds, the points should be projected onto the x − y plane, 
which is partitioned into grids under the current filtering window. 

Fig. 5. The sketch map of ground seeds acquisition. (a) Point clouds colored by elevations. (b) The shifted point clouds in x direction. The red points are the original 
points, while the blue and green points are the shifted points in x direction with shift and 2∗shift, respectively. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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Obviously, larger window size results in less ground seeds. To acquire 
more ground seeds, this paper tries to shift the point clouds in x and y 
directions. As we know, the ground seeds are the points fallen into the 
grids with the lowest elevations. Thus, the grids can only capture limited 
lowest points within fixed local areas. However, if we shift the point 
clouds gradually, the local areas corresponding to each grid will be 
changed. That is to say the lowest points within the grids will be 
changed. Thus, more ground seeds can be captured by the grids. 

In Fig. 5 (b), the red points are the original points, while the blue and 
green points are the shifted points in x direction with shift and 2∗shift, 
respectively. In each shifted process, only the points fallen into the scope 
of the original points are used to locate the ground seeds. This procedure 
can be written as Eq. (8).  

where P(x, y, z) is the original point clouds. x shift and y shift are the 
shifted stepsizes in x and y directions. min(x), max(x), min(y) and max(y)
indicate the scope of the original points. shift is the stepsize, which is 
defined as one fifth of the window size in this paper. Thus, the x shift can 
be set as [ − 2*shift, − shift,0, shift,2*shift]respectively in each time. As a 
result, five times of ground seeds will be obtained. Of course, shift can be 
set to other values, such as one third of the window size. Consequently, 
three times of ground seeds can be acquired. Thus, the stepsize can be set 
empirically. It only affects the number of final obtained ground seeds. 
Note that when shifting the point clouds in x direction, y shift should be 
equal to zero. Similarly, when shifting the point clouds in y direction, 
x shift should be equal to zero. 

2.4. Progressive morphological filtering 

As mentioned above, object primitives (Obj1, Obj2, ⋯, Objk) can be 

acquired by using mean shift segmentation method. In this paper, win
dow sizes (W1, W2, ⋯, Wk) are set as the horizontal sizes of object 
primitives. Note that window sizes are sorted in ascending order. In 
other words, Wk− 1 should be smaller than Wk. The benefits of setting 
window sizes as the horizontal sizes of object primitives are twofold. On 
the one hand, the maximum filtering window can be obtained auto
matically, which improves the automation and robustness of the filter 
for unknown environments. On the other hand, traditional morpholog
ical filtering methods always roughly set window sizes exponentially 
increasing. This setting is non-principled. In this paper, all the filtering 
windows are set according to the sizes of object primitives, which can 
reduce iteration times. Meanwhile, the filtering efficiency can be 
improved. 

Fig. 6 is the flowchart of the proposed morphological filtering 
approach. The proposed morphological filter is processed in an iterative 
manner with filtering windows downsizing. The iteration is started with 
the largest window size Wk, which corresponds to the largest size of 
object primitives. Thereafter, morphological top-hat operation is 
applied to detect non-ground pixels. 

In morphological top-hat transformation, three operations are 
involved, including erosion, dilation and opening. These morphological 
operations are defined as Eqs. (9)–(12). 

EW [DSM(x, y) ] = min{DSM(x + i, y + j)|i, j ∈ W&(x + i, y + j) ∈ DSM }

(9)  

DW [DSM(x, y) ] = max{DSM(x + i, y + j)|i, j ∈ W&(x + i, y + j) ∈ DSM }

(10)  

OW [DSM(x, y) ] = DW [EW [DSM(x, y) ] ] (11) 

Fig. 6. Flowchart of the proposed morphological filtering method.  

shifted pts =

⎧
⎨

⎩
P(xi + x shift, yi + y shift, zi)

⃒
⃒
⃒
⃒
⃒
⃒

min(x)⩽xi + x shift⩽max(x); x shift ∈ [ − 2*shift, 2*shift], y shift = 0
∪

min(y)⩽yi + y shift⩽max(y); y shift ∈ [ − 2*shift, 2*shift], x shift = 0

⎫
⎬

⎭
(8)   
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THW [DSM(x, y) ] = DSM(x, y) − OW [DSM(x, y) ] (12)  

where EW[⋅] is the morphological erosion, in which the minimum pixel 
value within the filtering window W is achieved. The pixel value 
mentioned here is equivalent to the value of each grid in DSM(x, y), 
which can be obtained by seeking the lowest elevation of points fallen 
into the grid. DW[⋅] is the morphological dilation, where maximum pixel 
value within the filtering window W is achieved. OW[⋅] is the morpho
logical opening, which is realized using morphological erosion followed 
by morphological dilation. THW[⋅] is the morphological top-hat trans
formation, which is realized by subtracting the morphological filtering 
result from the original data. Non-ground pixels can be detected if the 
morphological top-hat transformation results are larger than the 
filtering threshold, which can be calculated automatically according to 
the filtering window size as recommended by Zhang et al. (2003) [19]. 

When non-ground pixels are detected and removed, this paper fills 
these pixels using an image inpainting technique as recommended by 
Pingel et al. (2013) [24] and Özcan and Ünsalan (2017) [40]. The image 
inpainting technique tries to fill blank pixels using the nearest neigh
boring pixels. Using this technique, the digital terrain model (DTM) can 
be obtained in each iteration. Moreover, from Fig. 6, it can be found that 
the non-ground pixels are detected and removed iteratively. Thus, the 
obtained DTM will be changed from rough to accurate. To remove non- 
ground points, this paper calculates the residuals between the points and 
DTM. If the residuals are larger than the threshold, the points are labeled 
as non-ground points and removed. The threshold is calculated as the 
squared power of the slope of the obtained DTM [40]. In so doing, points 
on the abrupt terrains can be protected from removal since the slopes of 
these places are larger and the corresponding filtering thresholds will be 
larger. The residual zi

residual and threshold tre are calculated as Eqs. (13) 
and (14). 

zi
residual = zi − zi

DTM (13)  

tre = ρ + Δ2 (14)  

where zi is the observed elevation of each point, zi
DTM is its corre

sponding elevation on the DTM. Δ is the local slope of the DTM. ρ is a 

constant, which is set to 0.3 m in this paper. It means that the points with 
the elevation residuals smaller than 0.3 m will be accepted as ground 
points when the local slope of the DTM is equal to zero. In general, ρ 
plays a role of a compromise between the omission error and the com
mission error. A larger ρ means that more low points including some low 
shrubs will be accepted as ground points. Thus, the commission error 
may be larger. As a contrast, smaller ρ will lead to larger omission error. 
It is because some points on the abrupt terrains will be rejected as non- 
ground points. Generally speaking, ρ is determined experimentally [40]. 

Considering that the progressive morphological filter does not utilize 
the geometric characteristics to classify ground points from object points 
[47]. Some ground points on the protruding terrains are easily wrongly 
classified as object points and filtered. As a result, the terrain details 
cannot be protected effectively. To solve this problem, this paper re
covers some filtered ground points by adopting the surface-based 
filtering strategy. 

As shown in Fig. 7, the red and blue points are ground and non- 
ground points obtained using the progressive morphological filter. 
This paper tries to recover some non-ground points that are close to 
terrains as ground points. The retrieval procedure is carried out as 
follows:  

i. Traverse each point pi in the ground points set {Gpts} and find its 
closest ground neighbors within r radius that is equal to the grid 
size used in Eq. (5).  

ii. Construct a surface S using these ground neighbors by means of 
the RBF interpolator.  

iii. Locate the nearest non-ground neighbors from non-ground points 
set {NGpts} within r radius surrounding point pi.  

iv. Calculate the residuals h from these non-ground neighbors to the 
constructed surface S. If h is less than the threshold δz, the cor
responding non-ground point will be recovered as a ground point. 

Steps i-iv are repeated until all the ground points in {Gpts} are tra
versed. All the recovered ground points will be added in {Gpts}. 

3. Results and validation 

This paper adopts abundant datasets located in different forest en
vironments for testing the performance of the proposed method. These 
datasets are provided by a research project named NEWFOR (NEW 
technologies for a better mountain FORest timber mobilization) [54]. 
The benchmark locates in total eight study areas in five different 
countries, which covers various terrain environments and forest types 
[55]. These airborne laser scanning (ALS) datasets are acquired using 
different sensors and settings as tabulated in Table 1. There are 18 plots 

Fig. 7. The sketch map of ground points retrieval. Red points are ground 
points, while blue points are non-ground points. The blue point with an excircle 
is a recovered ground point. r is the radius for locating point pi’s neighbors. S is 
the constructed surface using these neighbors. h is the residual from the point to 
the surface S. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 1 
Acquisition parameters for the ALS benchmark [55].  

Study 
area 

Country Plots Size 
(ha) 

Point density 
(pts/m2) 

Sensors 

Saint- 
Agnan 

France 1  1.0 13 Riegl LMS- 
Q560 

Cotolivier Italy 3  0.4 11 Optech 
ALTM 3100 

Berner 
Jura 

Switzerland 1  0.1 5 Leica ALS 70 

Montafon Austria 1  0.3 22 Riegl LMS- 
Q560 

Pellizzano Italy 2  0.3 95–121 Riegl LMS- 
Q680i 

Asiago Italy 3  0.4 11 Optech 
ALTM 3100 

Tyrol Austria 3  1.2 4–10 Optech 
ALTM 3100 

Leskova Slovenia 4  0.8 30 Riegl LMS- 
Q560  
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with total sizes varying from 0.1 ha to 1.2 ha. The point densities of these 
plots vary from 5 points/m2 up to 121 points/m2. Thus, the experi
mental results of these datasets can indicate how about the filtering 
performance towards different point densities. The research project 
NEWFOR is initially introduced for improving forest timber evaluation 
and mobilization using ALS. In this paper, we use the benchmark to 
evaluate the performance of this method in different forested environ
ments. Note that due to the data property rights, four datasets are not 
publicly available. Thus, 14 datasets are used for the experiments in this 
study. 

Fig. 8 shows 3-D point clouds of six different plots in this benchmark. 
These figures shows that these samples cover different terrain environ
ments with different point densities. Moreover, these datasets consist of 
different vegetation types. Thus, this benchmark will be helpful for 
testing the filtering performance in different forested environments. The 
NEWFOR project provides referenced digital terrain models (DTMs) 
with 1 × 1 or 0.5 × 0.5 spatial resolution. Therefore, it will be easy to 
compare the filtered DTM with the referenced DTM. The difference 
between the filtered and the referenced DTM is accessed using root mean 
square error (RMSE). It is defined as Eq. (15). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1

∑n

j=1
(refer DTM(i, j) − DTM(i, j) )2

m × n

√
√
√
√
√

(15)  

where refer DTM is the referenced DTM, while DTM is the filtered DTM. 
m × n is the total number of grids in the DTM. 

To further analysis of the proposed method, four accuracy indexes 
including type I error (T.I), type II error (T.II), total error (T.E) and 
kappa coefficient (K) are calculated in this paper. Since NEWFOR does 
not provide the referenced ground and non-ground points in these 14 
samples, this paper extracts the ground truth manually using a visuali
zation analysis software called as CloudCompare [56]. These four in
dexes can be calculated according to the confusion matrix (Table 2) 
using Eqs. (16)–(19). The filtering results of the proposed method to
wards these 14 samples are shown in Table 3. 

T.I =
b
e
× 100% (16)  

T.II =
c
f
× 100% (17)  

T.E =
b + c

n
× 100% (18)  

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P0 = (a + d)/n

Pe = e/n × g/n + f/n × h/n

K =
P0 − Pe

1 − Pe
× 100\%

(19) 

Fig. 8. 3-D point clouds in different plots: (a) Sample 01; (b) Sample 02; (c) Sample 06; (d) Sample 08; (e) Sample 09; (f) Sample 18. The point clouds are colored 
by elevations. 

Table 2 
Confusion matrix of the filtering results.    

Filtering results    

Ground Non-ground  

Reference Ground a  b  e = a+ b  
Non-ground c  d  f = c+ d    

g = a+ c  h = b+ d  n = a+ b+ c+ d   

Table 3 
Filtering accuracy of the proposed method towards 14 samples. (Due to the data 
property rights, four samples (05, 12, 13 and 14) are not provided by the project 
NEWFOR).  

Samples Type I error 
(%) 

Type II error 
(%) 

Total error 
(%) 

Kappa 
(%) 

RMSE 
(m) 

01  2.28  0.38  0.62  97.20  0.65 
02  2.96  1.57  1.88  94.63  0.56 
03  1.07  1.07  1.07  97.47  0.36 
04  0.48  0.08  0.23  99.51  0.30 
06  1.41  2.02  1.70  96.58  1.08 
07  1.00  2.05  1.84  94.28  0.36 
08  1.71  0.13  0.32  98.47  0.29 
09  1.19  0.01  0.26  99.21  0.55 
10  2.80  1.26  1.55  94.98  0.59 
11  3.75  0.25  0.56  96.49  1.13 
15  9.43  0.69  2.28  92.16  0.54 
16  9.96  0.68  2.64  91.85  0.69 
17  2.06  0.03  0.29  98.68  0.47 
18  1.49  0.17  0.35  98.47  1.28  
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Table 3 shows that very good performance for all these 14 samples is 
achieved by the proposed filter. The largest total error is 2.64% (Sample 
16), while all the kappa coefficients are larger than 90%. Moreover, only 
three samples’ (Sample 06, Sample 11 and Sample 18) RMSEs are larger 
than 1.00. This indicates the obtained filtering results are very close to 
the referenced ground truth. Meanwhile, the difference between the 
filtered DTM and the referenced DTM is also very smaller. Fig. 8 shows 
the error distributions for the 14 samples. Grey points are the correctly 
classified ground points. As shown in Fig. 9 (a)-(n), most ground points 
are classified correctly. Blue points are the wrongly missed ground 
points, which lead to type I error (also called as omission error). Fig. 9 
(k) and (l) show Samples 15 and 16 obtain larger type I errors, which can 
also be found from Table 3. Samples 15 and 16 obtain 9.43% and 9.96% 
type I errors, respectively. Both of these two errors are much larger than 
the ones of other 12 samples. Red points are the wrongly accepted non- 
ground points, which lead to type II error (also called as commission 

error). From Fig. 9 (f), it can be found that the type II error of Sample 07 
is a little larger, which agrees with the findings of Table 3. Sample 07 
achieves the largest type II error among all these 14 samples. In addition 
to Samples 06, 07, 15 and 16 causing larger filtering errors, all the other 
samples achieve very good filtering accuracy. 

4. Discussion and comparison analysis 

In this paper, five parameters are involved, namely h, δh, shift, ρ, and 
δz as tabulated in Table 4. To make the proposed method easy to 
implement, all the five parameters are set as fixed values. h is the 
bandwidth, which is related to the mean shift segmentation results. As 
mentioned in Section 2.1, the bandwidth h is the only parameter 
involved in the mean shift method. Since h determines the neighboring 
size of calculating mean shift vector (Ms(vi)in Eq. (1)), the value of h will 
influence the segmentation results. As recommended by Chen et al. 

Fig. 9. Error distributions of the 14 samples: (a) Sample 01; (b) Sample 02; (c) Sample 03; (d) Sample 04; (e) Sample 06; (f) Sample 07; (g) Sample 08; (h) Sample 09; 
(i) Sample 10; (j) Sample 11; (k) Sample 15; (l) Sample 16; (m) Sample 17; (n) Sample 18. Grey points are the correctly classified grounds, blue points are the wrongly 
missed ground points and red points are the wrongly accepted non-ground points. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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(2018), the bandwidth should be set according to the tree crown sizes in 
the forest environments. In this study, the mean shift method is used to 
segment object primitive for calculating the filtering window sizes. In
dividual tree does not need to be segmented very correctly. Thus, the 
bandwidth can be set as a constant roughly only if its value is a little 
larger than the crown sizes in the testing area. In this paper, the band
width is set to 5 m. δh is a parameter involved in Eq. (7). Eq. (7) is used to 
build a trending surface for calculating the interpolated elevation of 
each point. As shown in Fig. 4, the trending surface is generated based 
on the ground seeds using the RBF interpolator. In general, the inter
polating process is easy to cause interpolation fitting error. As a result, 
some interpolated elevations may be higher than the actual observed 
elevations. Obviously, it is unreasonable. To avoid this, a height shift δh 
is added to the trending surface. δh can be set to any constant only if its 
value is larger than the interpolation fitting error. In this paper, δh is set 
to 3 m. shift is a parameter used for obtaining more ground seeds. It 
represents a stepsize when shifting the point clouds in × or y direction. 
In this paper, the stepsize is set to one fifth of the window size. It means 
that the point clouds will be shifted − 2*shift, − *shift, 0, shift, and 2*shift 
respectively in each time. As a result, five times of ground seeds will be 
obtained. Of course, shift can be set to other values, such as one third of 

the window size. Consequently, three times of ground seeds can be ac
quired. Thus, the stepsize can be set empirically. It only affects the 
number of final obtained ground seeds. ρ is a constant parameter 
mentioned in Eq. (14). Eq. (14) is used for calculating the filtering 
threshold automatically. In Eq. (14), ρ represents a fixed height value. It 
means the points with the residuals smaller than ρ will be accepted as 
ground points when the local slope of the DTM is equal to zero. As 
mentioned in Section 2.4, ρ plays a compromise between the omission 
and commission errors. There is no best setting for it. In general, ρ is set 
experimentally. In this paper, ρ is set to 0.3 m. δz is the threshold used 
for recovering the filtered ground points. It is mentioned in the fourth 
step of the ground points retrieval procedure. For most morphological 
filtering methods, they are easy to flatten terrain details. In other words, 
the points on the abrupt terrains are easy to be filtered as non-ground 
points. To recover these filtered ground points, this paper proposed a 
retrieval procedure. δz is the parameter that determines which point 
should be recovered. Similar to ρ, δz also affects the omission and 
commission errors of the filtering results. Larger δz means more points 
will be accepted as ground points. As a result, some low non-ground 
points may be wrongly classified as ground points. Thus, the commis
sion error may be larger. Conversely, smaller δz will lead to less points to 
be recovered as ground points. It means that some ground points will be 
rejected as non-ground points. Consequently, omission error will be 
larger. Therefore, δz needs to be set experimentally. In this paper, δz is 
set to 0.3 m. 

To compare the filtering performance objectively, four famous open- 
source filtering algorithms are also tested on these 14 samples. The first 
filtering algorithm designed by Kraus and Pfeifer (1998) is specially 
developed for wooded areas [41]. This method is one of the so-called 
surface-based filters, which is implemented in the FUSION v.3.8 soft
ware. The progressive morphological (PM) filter was proposed by Zhang 
et al. (2003). This filter removes non-ground points gradually using a 
series of filtering windows [19]. The PM algorithm is implemented in 

Fig. 9. (continued). 

Table 4 
Involved parameters and corresponding values used 
in this paper.  

Parameters Values 

h  5 m 
δh  3 m 
shift  windowsize/5  
ρ  0.3 m 
δz  0.3 m  
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ALSPAT v.1.0. MCC-LiDAR v.2.1 is developed for filtering in forested 
environments. Like FUSION v. 3.8 software, MCC is also a surface-based 
filter. In this method, non-ground points are filtered iteratively if their 
elevations exceed a threshold curvature that is calculated using a TPS 
built surface [42]. CSF is a famous filtering algorithm proposed recently, 
which is integrated in a 3-D point cloud and mesh processing software 
named CloudCompare [56]. CSF is also a surface-based filtering method, 

which simulates the physical process of cloth-touching objects. The 
advantage of CSF is that the involved parameters are easy to be set. 

The filtering results of these four famous filters and the proposed 
filter are shown in Tables 5 and 6 and Figs. 10–12. Tables 5 and 6 
indicate the type I and II errors of the 14 samples of these five filtering 
methods. The average (Ave), Minimum (Min), Maximum (Max) and 
Standard deviation (Std) of the errors for the 14 samples are also 
calculated to test the robustness of the filters towards different forested 
environments. For type I error, this paper achieves the minimum 
average value (2.97%) comparing with that of other four methods. It 
means that the proposed filter can preserve terrain details much better 
the other filters. In addition to the FUSION method, the average of type I 
errors of PM, MCC and CSF are all larger than 10%. Moreover, the 
standard deviation of type I error of the proposed method is also smaller 
than that of other filtering methods. Therefore, we can conclude that the 
proposed filter owns strong filtering robustness towards different 
forested terrains. In terms of type II error, all the five filtering methods 
perform very well in all the 14 samples. The average of type II errors of 
four filters (PM, MCC, CSF and the proposed method) are all smaller 
than 1%. Meanwhile, the corresponding standard deviations of type II 
errors are also very smaller. The maximum type II error of this paper is 
2.05%, which is much smaller than that of the FUSION method. 
Therefore, we can conclude that this method can eliminate the non- 
ground points effectively. 

Figs. 10–12 show the comparison results of total errors, kappa co
efficients and RMSEs of the five filtering methods. From Fig. 10, it can be 
found that only two samples’ (Samples 15 and 16) total errors of the 
proposed method are larger than 2%. Among all the 14 samples, this 
paper achieves the smallest total errors for 11 samples, including Sam
ples 01, 02, 03, 04, 08, 09, 10, 11, 15, 16 and 18. Consequently, this 

Table 5 
Type I error of the 14 samples of different filtering methods.  

Samples FUSION PM MCC CSF Proposed method 

01  1.83  5.64  34.58  6.96  2.28 
02  1.39  13.65  26.53  33.03  2.96 
03  0.82  6.86  26.77  29.00  1.07 
04  0.25  1.67  9.79  4.94  0.48 
06  2.17  24.71  13.18  31.97  1.41 
07  4.75  38.63  17.04  19.01  1.00 
08  2.66  28.07  13.76  8.11  1.71 
09  0.50  5.29  29.25  5.73  1.19 
10  2.61  13.55  32.11  7.17  2.80 
11  1.17  10.24  36.91  8.40  3.75 
15  14.34  22.18  35.09  20.08  9.43 
16  12.15  24.42  33.56  21.78  9.96 
17  0.60  8.28  20.58  1.56  2.06 
18  1.72  24.96  24.99  5.64  1.49 
Ave  3.35  16.30  25.30  14.53  2.97 
Min  0.25  1.67  9.79  1.56  0.48 
Max  14.34  38.63  36.91  33.03  9.96 
Std  4.37  10.87  9.04  10.98  2.98  

Table 6 
Type II error of the 14 samples of different filtering methods.  

Samples FUSION PM MCC CSF Proposed method 

01  1.58  0.76  0.07  0.19  0.38 
02  3.47  3.37  0.23  0.18  1.57 
03  2.08  1.91  0.10  0.08  1.07 
04  1.08  0.23  0.01  0.03  0.08 
06  0.72  0.93  0.19  0.11  2.02 
07  0.45  0.37  0.16  0.27  2.05 
08  0.01  0.01  0.00  0.00  0.13 
09  1.55  0.02  0.02  0.00  0.01 
10  3.29  0.89  0.61  0.90  1.26 
11  7.96  0.19  0.08  0.14  0.25 
15  0.42  0.32  0.01  0.02  0.69 
16  0.87  0.47  0.08  0.08  0.68 
17  0.18  0.02  0.03  0.01  0.03 
18  0.60  0.07  0.02  0.01  0.17 
Ave  1.73  0.68  0.12  0.14  0.74 
Min  0.01  0.01  0.00  0.00  0.01 
Max  7.96  3.37  0.61  0.90  2.05 
Std  2.09  0.93  0.16  0.23  0.73  
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paper achieves 1.11% average total error, which is much smaller than 
that of other filtering methods. Fig. 11 indicates all the kappa co
efficients of the 14 samples are larger than 90%. The average kappa 
coefficient of the proposed method is 96.43%, which is also the highest 
average kappa coefficient among these five filters. Fig. 12 indicates that 
the proposed filter achieves the smallest RMSE for 11 samples, including 
Samples 01, 02, 03, 04, 06, 07, 08, 10, 15, 16 and 18. The average RMSE 
of the proposed method is 0.63, which is the best filtering result for 
generating DTM. 

Fig. 12 shows that MCC, CSF and the proposed filtering method can 
achieve very good RMSE results. To further analysis the proposed 

method, the generated DTMs of the proposed method with the ones of 
the MCC and CSF methods are compared. MCC is selected because 
previous studies have shown that this method can obtain the best overall 
performance towards forested environments [48]. CSF is a very famous 
filtering method in recent years. This method is easy to use and robust to 
different terrains. In addition to the DTMs generates using filtering re
sults, this paper also shows the referenced DTMs provided by the project 
NEWFOR for the comparison analysis. The comparison results are shown 
in Fig. 13. Four samples with different forested environments are 
selected for the comparison. The first row shows the DTMs of Sample 01. 
The second row shows the DTMs of Sample 02. The third row shows the 

Fig. 13. Comparison of DTMs of different filtering methods towards different forested areas. (a)-(d) are the DTMs of Sample 01, (e)-(h) are the DTMs of Sample 02, 
(i)-(l) are the DTMs of Sample 04, and (m)-(p) are the DTMs of Sample 10. The first column indicates the DTMs of the MCC method. The second column indicates the 
DTMs of the CSF method. The third column indicates the DTMs of the proposed method. The fourth column indicates the referenced DTMs. The red dotted ellipse 
represents the commission error, while the blue dotted ellipse represents the omission error. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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DTMs of Sample 04. The fourth row shows the DTMs of Sample 10. In 
each row, DTMs of MCC, CSF, the proposed method and the reference 
are listed respectively. In Sample 01, MCC tends to produce artificial 
terrains due to accepting non-ground points as ground points as shown 
in Fig. 13 (a). From Fig. 13 (b), it can be found that CSF has difficulties in 
preserving terrain details. CSF is easy to flatten protruding terrains, 
which can also be found in Fig. 13 (f) and (j). The proposed method 
seems to produce a better DTM (Figure (c)) when comparing with the 
referenced DTM as shown in Fig. 13 (d). In Sample 02, both the DTMs of 

MCC and the proposed method (Fig. 13 (e) and (g)) are close to the 
referenced DTM (Fig. 13 (h)) except that some small commission errors 
are existed. The DTM produced by CSF has a little larger omission error 
as shown Fig. 13 (f). In Sample 04, all the DTMs of these three filters 
(Fig. 13 (i), (j) and (k)) are as accurate as the referenced one (Fig. 13 (l)). 
In terms of Sample 10, CSF and the proposed method produce more 
accurate DTMs (Fig. 13 (n) and (o)) comparing with the referenced DTM 
(Fig. 13 (p)). As shown Fig. 13 (m), there are a little larger omission and 
commission errors in the DTM produced by MCC. All in all, from all the 

Fig. 14. Comparison of the cross-section profiles of the DTMs generated by different methods towards Sample 02. (a) the true DTM generated from the true ground 
points; (b) The cross-section profile (green line in (a)) of the true DTM; (c) the cross-section profile of the MCC filtered DTM; (d) the cross-section profile of the CSF 
filtered DTM; (e) the cross-section profile of the proposed filtered DTM. The red dotted ellipse represents the commission error, while the blue dotted ellipse rep
resents the omission error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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comparison results mentioned above, this paper can produce more ac
curate DTMs with smaller omission and commission errors. In other 
words, the method in this paper can not only remove object points 
accurately but also protect terrain details effectively. 

To see the details of the error distribution and understand what cause 
the commission and omission errors, this paper compared the cross- 
section profiles of the DTMs generated by different methods towards 
Sample 02. As shown in Fig. 14 (a), the true DTM was generated using 
the reference ground points. The green line represents the location of the 
cross-section on the DTM. Fig. 14 (b) shows the true DTM cross-section 
profile and LiDAR points. Compared with the true DTM cross-section 
profile, it can be found that the MCC method is easy to produce artifi
cial terrains due to accepting non-ground points as ground points as 
shown in Fig. 14 (c). That’s why the commission error of the MCC 
method is larger. In Fig. 14 (d), it is easy to find that the CSF method 
cannot protect terrain details well. Obviously, the protruding terrains 
are flattened by the CSF method as the blue dotted ellipse labeled in 
Fig. 14 (d). Consequently, the omission error of the CSF method is larger. 
Compared with the MCC and CSF methods, the proposed method can 
produce the most accurate DTM cross-section profile. As shown in 
Fig. 14 (e), the proposed method can protect the terrain details well 
while removing object points accurately. 

5. Conclusion 

Filtering of airborne LiDAR point clouds in forested area is a chal
lenging task. This paper proposed an improved morphological filter for 
the DTM extraction under forest canopy, which is the first time combing 
mean shift segmentation with morphological filter. The mean shift 
segmentation is used for obtaining the object primitives. In so doing, the 
filtering window sizes can be determined automatically. Thus, the 
robustness and automation of the proposed method are improved. Point 
cloud detrending is proposed by generating a trending surface using the 
RBF interpolator, thereby improving the adaptation to sloped terrains. 
To acquire more ground seeds for generating an accurate trending sur
face, a point cloud shifting in x and y directions technique is proposed. 
Finally, the filtered ground points by progressive morphological filter 
are recovered by adopting the surface-based filtering strategy. 14 
forested samples provided by the project NEWFOR are adopted for 
testing. Experimental results show that the proposed method can ach
ieve the average type I error of 2.97%, which is the smallest one when 
compared to other four famous open-source filtering methods, including 
FUSION, PM, MCC and CSF. In terms of total error, kappa coefficient and 
RMSE, the proposed method also performs the best. This paper also 
compares the DTMs of MCC, CSF and the proposed method with the 
referenced ones. The comparison results show that the proposed method 
can not only eliminate non-ground point accurately but also protect 
terrain details effectively. 
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