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A B S T R A C T   

To improve the accuracy of wood and leaf points classification for individual tree, this paper proposed a sepa
ration method based on mode points evolution from terrestrial LiDAR point clouds. In the proposed method, the 
Mean Shift method was used to first acquire the mode points, which were then adopted as nodes to build a 
network graph for the individual tree. By path retracing and calculating the visiting frequency of each node, the 
wood seed nodes were detected. To obtain more wood nodes, the wood seed nodes were evolved based on three 
constraints, namely the shortest path length of the evolved nodes to the base node should be smaller, the evolved 
nodes should not belong to the leaf nodes that have been detected by path retracing and the verticality of the 
evolved nodes should be similar as the wood seed nodes. After wood nodes evolution, the segments corre
sponding to each wood seed node were merged together to obtain the final wood points. The proposed method 
has been evaluated using nine tree samples with seven different tree species. Experimental results showed that 
the proposed method can achieve an average wood and leaf classification accuracy of 0.892. The average F1 
score for wood was 0.871, while the average F1 score for leaf was 0.900. Compared to two other famous wood 
and leaf classification methods, the proposed method can achieve better classification results.   

1. Introduction 

Light detection and ranging (LiDAR) has been developing very fast in 
the past decades (Vosselman and Maas, 2010). Based on different plat
forms, LiDAR systems can be separated into three groups, namely 
airborne LiDAR, terrestrial LiDAR and handheld LiDAR. The terrestrial 
LiDAR is a ground-based LiDAR system, which can emit laser pulses 
actively to obtain the three-dimensional coordinate information of the 
target objects (Wang et al., 2020). Compared with other measurements, 
terrestrial LiDAR can provide dense point clouds rapidly and accurately 
(Liang et al., 2018). Thus, terrestrial LiDAR has been widely used for 
forest inventories, such as forest parameter calculation (Henning and 
Radtke, 2006; Cote et al., 2011; Olofsson et al., 2014), biomass esti
mation (Kankare et al., 2013; Yu et al., 2013; Wang et al., 2019), and leaf 
area estimation (Beland et al., 2011; Li et al., 2017), etc. 

For most forest applications using terrestrial LiDAR system, the 

separation of wood and leaf is a perquisite (Xi et al., 2018; Moorthy 
et al., 2020). For instance, it is necessary to first extract the leaf points 
when calculating the leaf area. This is because the existence of wood 
components will overestimate the leaf area index around 3% to 32% 
(Zhu et al., 2018). Moreover, when estimating wood volumes or above 
ground biomass, the leaf points will influence the estimated results 
(Calders et al., 2015). Therefore, wood and leaf should be correctly 
separated before carrying out the follow-up applications. However, the 
separation of wood and leaf is still a challenging task to achieve due to 
the existence of different tree structures or species. Especially for com
plex trees, it is generally hard to make a clear difference between wood 
and leaf points. 

This paper proposed a wood and leaf classification method based on 
mode points evolution. In the proposed method, the mode points that 
represent the segment results are first acquired using the Mean Shift 
method. In this way, the point-wise classification is transformed into the 
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segment-wise classification. Thus, the computation burden is relieved 
and the implementation efficiency is improved. Based on the path 
retracing and the path frequency detection, the leaf nodes and wood 
seed nodes are detected. In order to evolve the wood seed nodes, three 
major constraints were considered. Firstly, the shortest path length of 
the evolved nodes to the base node should be smaller. Secondly, the 
evolved nodes should not belong to the leaf nodes that have been 
detected by path retracing, and finally the verticality of the evolved 
nodes should be similar as the wood seed nodes. By merging the seg
ments corresponding to all the wood nodes, the final wood points are 
obtained. The proposed wood and leaf separation method is easy to 
implement and achieves good classification performance, which will 
provide a good foundation for the forest inventory applications using 
terrestrial LiDAR. 

1.1. Related works 

In the past decade, many famous wood and leaf separation methods 
have been proposed. According to different separation principles, these 
methods can be classified into three categories, namely geometric fea
tures based, radiometric features based and the graph based methods. 

The geometric features based methods mainly classify wood and leaf 
points based on their different geometric features. In general, the leaf 
points show “scatter” properties, while the wood points show “linear” or 
“surface” properties. These three geometric salient features can be 
calculated according to the covariance matrix of neighboring points 
(Moorthy et al., 2020; Vicari et al., 2019). Thus, many researchers have 
proposed supervised or unsupervised learning methods for the classifi
cation by means of Support Vector Machine (SVM), Random Forest (RF), 
or Gauss Mixture Model (GMM) (Brodu and Lague, 2012; Ma et al., 
2016; Xi et al., 2020). For example, Wang et al. (2017) tested the per
formance of four famous machine learning methods, including SVM, RF, 
GMM and Naive Bayes (NB). Experimental results showed that the RF 
classifier achieved the best wood and leaf classification result (Wang 
et al., 2017). However, the study conducted by Wang et al. (2017) was 
based on two isolated trees. Further test on more tree species and more 
complicated forest environments should be conducted to show the 
effectiveness of the machine learning methods. One famous salient 
feature-based supervised learning method was developed by Ma et al. 
(2016). In their method, three salient features were calculated for each 
point based on the covariance matrix. Then the GMM was utilized for 
separating photosynthetic and nonphotosynthetic components (Ma 
et al., 2016). Experimental results indicate that the local dimensional 
features can separate leaves and stems effectively. However, in this 
method the radius of locating neighboring points is determined experi
mentally. In effect, the optimal determination of the neighboring radius 
is still unresolved. To avoid setting the neighboring radius, Moorthy 
et al. (2020) proposed a multi-scale supervised learning method. Instead 
of setting the neighboring radius as a fix constant, this method calcu
lated the salient features using varying neighbor sizes (Moorthy et al., 
2020). In this way, features of different scales can be obtained. Experi
mental results show that the multi-scale supervised learning methods 
can achieve better wood and leaf separation results. Although the multi- 
scale supervised learning methods performed better than the single- 
scale methods, the approach is computationally expensive and time 
consuming. To solve this problem, Zhou et al. (2019) proposed a multi- 
optimal-scale method. In their method, several candidate scales were 
first specified. Hereafter, the Shannon entropy for each scale is calcu
lated using the principal component analysis (PCA). The first m scales 
with smallest eigen-entropies are selected as the optimal scales. 
Compared to the multi-scale method, the multi-optimal-scale method 
can achieve more stable separation accuracy with several limited 
optimal scales (Zhou et al., 2019). Moreover, the multi-optimal-scale 
method can relief the computation burden and save computation time. 

In addition to these point-wise separation methods, some researchers 
have tried to calculate the geometric features of the segments to achieve 

better leaf and wood separation results. Wan et al. (2020) first applied 
the connected component segmentation to the plot-level tree points. 
Two kinds of geometric features, including the salient features and the 
distance between the centroid of each segment to the ground were 
calculated to identify the wood segments (Wan et al., 2020). Similarly, 
Zhang et al. (2019) also adopted the connected component segmenta
tion method. Here, the geometric features for each segment, including 
the number of points within the segment and the height-to-width ratio of 
the segment were calculated. The segments with larger number of points 
and higher height-to-width ratio were determined as the stem segments 
(Zhang et al., 2019). Compared with the point-wise classification 
methods, the segment-wise classification methods can generally reduce 
the computational burden and uncertainties of classification results 
(Zhang et al., 2013; Zhang et al., 2019). Ferrara et al. (2018) applied the 
segmentation strategy to separate the photosynthetic and non- 
photosynthetic components. In their method, the point clouds were 
first partitioned into voxels, which were further classified as active and 
non-active voxels based on the number of points within the voxel. 
Subsequently, the Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) method was applied to these voxels. The most highly 
populated cluster is classified as wood-cluster. Although a promising 
wood-leaf separation results can be achieved, the performance of this 
method is still influenced by fine-tuning two parameters in the DBSCAN 
clustering method, namely the radius Eps and the minimum number of 
points within the Eps-neighborhood (Ferrara et al., 2018). 

In general, the machine learning methods based on the geometric 
features can produce satisfactory wood and leaf classification results. 
However, the performance of the machine learning methods is affected 
by three factors, namely the classifier, the training samples and the 
calculated features. Thus, the generalization capability of the machine 
learning methods becomes limited, especially when applying to some 
unknown scenes. Moreover, the machine learning methods always 
involve huge computational burden, which will be time consuming. 
Comparing with the point-wise classification using the machine learning 
method, the segment-wise classification methods can reduce the 
computational burden and uncertainties of the point clouds classifica
tion. However, the wood and leaf classification results heavily depend 
on the segmentation results. That is, if the classification results exist 
errors, the performance of wood and leaf classification cannot be good. 

In addition to the geometric features, such as linear features, surface 
features and scatter features, as adopted in the machine learning 
methods, some researches have tried to combine some radiometric 
features to test the effectiveness of the combination of these two kinds of 
features (Penasa et al., 2014). The radiometric features, especially the 
intensity values have been proved to be useful in many classification 
works (Penasa et al., 2014; Lin and Herold, 2016; Zhang and Liu, 2016). 
Zhu et al. (2018) adopted seven radiometric features and six geometric 
features for the separation. The radiometric features were mainly 
involved with intensity and RGB information, while the geometric fea
tures were mainly calculated using eigenvalues and heights for each 
point. Zhu et al. (2018) indicated that combining the geometric and 
intensity features, the three classes including ground, wood and foliage 
can be better identified. By calculating the importance of the features 
using the RF function, Zhu et al. (2018) concluded that the geometric 
features were more important than the radiometric features. Windrim 
and Bryson (2020) developed a new point-based deep learning archi
tecture for stem segmentation, which feed the intensity information into 
the learning representation. Experimental results indicated that the 
voxel-based deep learning method that used the intensity information of 
each point performed the best. Windrim and Bryson (2020) also 
concluded that incorporating the intensity values into a method will 
result in higher segmentation accuracy (Windrim and Bryson, 2020). 
However, the deep learning method is always device-dependent. 
Compared with Central Processing Unit (CPU), the implementation on 
a Graphics Processing Unit (GPU) enables to process much more dense 
point clouds. 
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The reflected laser intensity is generally affected by the target 
reflectance, incidence angle and the distance between the laser scanner 
and the target (Fang et al., 2015; Tan and Cheng, 2016; Xu et al., 2017). 
To obtain accurate intensity values, the influence of incidence angle and 
distance should be modified. Tan et al. (2021) corrected the intensity 
values using the polynomial model (Tan and Cheng, 2015), which was 
followed by applying the k-means clustering method to obtain two 
classified categories, including leaf points and the mixture of the leaf 
and wood points. Subsequently, the k-means clustering algorithm was 
adopted to refine the wood points since the leaf points are generally 
sparser. Experiments by Tan et al. (2021) also indicated that combining 
the intensity and geometric information for constraints could achieve 
promising classification results. Hackenberg et al. (2015) mentioned 
that the albedo of woods is different from that of leaves. Thus, the leaf 
points can be separated from wood points by setting the intensity 
threshold. Three different intensity thresholds (125, 150 and 175) were 
tested by Hackenberg et al. (2015). It was found that the higher the 
threshold value the more leaf points were removed, meanwhile, parts of 
the wood points will also be wrongly deleted. However, the appropriate 
intensity threshold should be set by visual inspection. In addition to 
using intensity information, some researchers try to adopt reflected echo 
information for the wood and leaf separation (Yao et al., 2011; Yang 
et al., 2013; Danson et al., 2014). Danson et al. (2014) and (2018) have 
tried to use the terrestrial LiDAR with the dual-wavelength full-wave
form function to describe the forest canopy. In their works, it was 
demonstrated that this technology can accurately describe the forest 
structure. Similarly, Li et al. (2013) also found that the dual-wavelength 
terrestrial LiDAR has the potential to discriminate leaf points from wood 
points. Zhao et al. (2011) discriminated the woody structures from the 
foliage by calculating the ratio of total power of the reflected pulse and 
its width. This was because the trunks and branches are solid targets. 
Thus, they generally produce a sharply peaked return pulse. 

In general, combining the geometric and the radiometric features can 
provide more information to discriminate wood points from leaf points 
leading to better classification outputs. The intensity information has 
been proved to be effective. However, the intensity values need to be 
corrected since the reflection intensity is not only related to the target 
material, but also related to the pulse travelling distance and reflection 
angle. Although the full-waveform data has shown the potential in 
separating the leaves and woods, not all LiDAR systems can provide this 
kind of data. 

Another kind of wood and leaf classification methods is the graph- 
based. The graph-based methods are based on a principle that the tree 
points can be arranged as a connected topological network. By applying 
the shortest path analysis the wood or larger branches can be separated 
from the leaves. The graph structure has been successfully applied in the 
tree crown extraction (Strimbu and Strimbu, 2015; Dong et al., 2020). In 
the graph, nodes and edges are included (Livny et al., 2010). Generally, 
the nodes correspond to the points while the edge weights are the dis
tances between each two points. Wang et al. (2020) proposed a recursive 
point cloud segmentation method called LeWoS by setting three con
straints to prune several edges. By exercising this graph segmentation 
technique recursively, a robust segmentation result was achieved (Wang 
et al., 2020). According to different geometric features of the segments, 
including linearity and size, wood and leaf points can be separated. To 
obtain a spatial smooth classification result, a class regularization 
technique is also applied. The advantage of this method is that the 
LeWoS is a fully automatic tool with only one parameter required to be 
set. Thus, this method can be easily and universally applied to the LiDAR 
point clouds obtained from any forest type. Vicari et al. (2019) proposed 
a wood and leaf separation algorithm based on geometric features and 
structural analysis. In their method, four different algorithms were 
adopted. Two methods were based on the point-wise geometric features. 
By separating the GMMs, point clouds were classified into a predefined 
number of classes. The other two methods were based on the shortest 
path detection with the tree assumed as a network. By applying the 

shortest path analysis, the paths with higher frequency of occurrence are 
detected as trunk of branches (Vicari et al., 2019). The strength of this 
method is that adopting four different methods together will ensure 
improvement in the robustness and generalization of the method 
thereby achieving better classification accuracy and stability. Tao et al. 
(2015) also applied the shortest path analysis for detecting wood points. 
In their method, point clouds were first sliced into bins. By detecting 
geometric primitives (such as circles or line segments) and applying 
shortest path analysis, the skeleton wood points can be obtained. In 
terms of the broad-leaved trees, the proposed method can achieve good 
classification accuracy with larger branches extracted effectively. 
However, some tiny twigs shaded by leaf clusters could be wrongly 
classified as leaves. 

The graph-based methods are easy to implement. Conversely, when 
encountering large number of points the constructed network will un
dertake huge computational burden. In the shortest path analysis, 
although the path retracing method performs well in detecting stems or 
larger branches, some small branches especially some tiny twigs close to 
the leaves are easily misclassified. In terms of the path frequency 
detection method, although this method can detect finer branching 
structures, many stem points are misclassified as leaf points since their 
occurrence frequency in the graph structure are not high. How to 
improve the stem points detection accuracy while keeping a finer 
branching structure is still challenging. 

1.2. Contributions of this work 

Although many works on wood and leaf separation have been pro
posed, there are still some unresolved challenges: 

i Most existing works cannot obtain a finer branching structure, 
especially when encountering complex tree structures, some tiny twigs 
are easily misclassified as leaf points. 

ii The omission or commission errors are uniformly distributed in the 
wood and leaf classification results, which can greatly affect forest ap
plications, such as tree modeling or photosynthesis analysis. 

iii The existing works cannot obtain a stable and accurate wood-leaf 
classification accuracy towards different tree species. The robustness 
and generalization of the wood and leaf classification method need to be 
improved. 

To solve these problems, this paper proposed a separation method 
based on mode points evolution. On the whole, the proposed method can 
be seen as a hybrid model, which combines the strengths of the graph- 
based and the geometric features based methods. To most graph-based 
methods, no matter the path retracing algorithm or the path frequency 
detection algorithm adopted, this kind of methods cannot obtain a finer 
branching structure while keeping a higher stem points extraction ac
curacy. In this paper, both the path retracing algorithm and the path 
frequency detection algorithm are combined for detecting leaf and wood 
nodes, respectively. Moreover, the method named as “evolution” was 
proposed in this paper. In the process of modes evolution, the geometric 
feature, namely verticality is adopted for recovering the misclassified 
stem points and tiny twig points. It is important to note that the geo
metric feature applied in this paper was only used for optimizing the 
separation results by the graph-based method which is different from the 
machine learning based geometric features methods, (e.g. multi- 
optimal-scale method proposed by Zhou et al. (2019)). In the pro
posed mode points evolution method, Mean Shift was adopted for the 
segmentation to obtain the mode points that were used to build the 
graph structure. Although the methods proposed by Ferrara et al. 
(2018), Wan et al. (2020) and Tan et al. (2021) all used certain clus
tering algorithms for segmenting the tree points, their wood-leaf sepa
ration principles are totally different from what the present authors have 
proposed. For instance, Ferrara et al. (2018) applied the DBSCAN clus
tering algorithm to the active voxels to obtain the wood-cluster directly 
since the grouped wood voxels are general larger. Wan et al. (2020) 
proposed a segment-wise geometric features calculation method. Tan 
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et al. (2021) applied k-means clustering method to the corrected in
tensity data and density data subsequently to separate the wood from 
leaf points. Yet, the proposed method mainly applied the Mean Shift 
method for obtaining mode points, which will be served as nodes in the 
graph construction. In so doing, the constructed graph will not be 
complicated and the shortest path analysis to the graph will not be time- 
consuming. 

Overall, the main contributions of the proposed method are as 
follows: 

• A hybrid wood-leaf separation model was developed, which com
bines the strength of graph-based and geometric features based 
methods. The hybrid model can reduce uncertainties of wood-leaf 
classification results and improve the separation accuracy towards 
different tree species and structures.  

• A method named as “Modes Points Evolution” was proposed. The 
mode points with similar verticality were evolved as the same labels. 
In so doing, the misclassified wood points can be recovered and a 
finer branching structure can be obtained.  

• Mean Shift segmentation algorithm was applied to obtain the mode 
points that were served as nodes in the graph construction. Using the 
mode points instead of tree points as the nodes, the constructed 
graph will be less complicated. The following shortest path analysis 
to the graph will be efficient.  

• The commute-time distance that refers to the path length in the 
graph was proposed. Compared to Euclidean distance, the commute- 
time distance can better reflect the position relation between nodes. 
In so doing, the “Evolution” can be conducted accurately and the 
wood points can be detected accurately. 

2. Methodology 

In this paper, the mode points play a critical role in the process of 
obtaining wood points. The method named as “Mode Points Evolution” 
was proposed for obtaining higher wood points detection accuracy and 
finer branching structure. Here, “Evolution” has a similar meaning as 
“Growing”. It means that the detected wood modes points are evolving 

and dynamic rather than fix and static. The flowchart of the proposed 
method is shown in Fig. 1. 

From Fig. 1, it can be found that the Mean Shift segmentation method 
is first applied to the point clouds. The clustering center of each segment 
is the mode point. Then, the mode points are utilized to construct a 
graph, which is the main structure for detecting wood and leaf points. 
According to the constructed graph, all the mode points will be con
nected as a network. In the network graph, the nodes are the mode 
points, while the weighted edges are the distances between each two 
mode points. 

According to the constructed graph, the wood nodes are detected 
based on path frequency, while the leaf nodes are detected by path 
retracing. In so doing, the proposed method can combine the strengths 
of path frequency detection and path retracing. In general, the detected 
wood and leaf nodes are not complete. To reduce the omission error, 
nodes evolution is applied to achieve better wood and leaf nodes 
detection results. According to the Mean Shift segmentation results, each 
node corresponds to a segment. Thus, the final wood and leaf points 
separation results can be acquired by merging the corresponding Mean 
Shift segments. 

The proposed method mainly concludes the following four steps: i 
Mode points acquisition by the Mean Shift segmentation, ii Graph con
struction and shortest path analysis, iii Leaf nodes detection based on 
pass retracing and nodes evolution, and iv Wood nodes detection based 
on path frequency and nodes evolution. The steps will be described in 
detail in the following subsections. 

2.1. Mode points acquisition by mean shift segmentation 

As mentioned above, mode points play a key role in the wood points 
acquisition. Here, the advantages of using the mode points instead of 
each point in point clouds are twofold. On the one hand, the mode points 
represent the segmentation results of the point clouds. Thus, the point- 
wise wood and leaf separation can be transformed into a segment-wise 
separation approach. Obviously, the implementation efficiency can be 
improved. On the other hand, using the huge point clouds to build the 
graph is hard to realize. Conversely, using the mode points will relief the 

Point Clouds

Mean Shift 
Segmentation

Mode Points 
Acquisition

Mode Points Graph 
Construction

Wood Nodes 
Detection

Leaf Nodes Detection

Path Frequency

Path Retracing

Nodes Evolution

Wood and Leaf 
Separation Result

Fig. 1. Flowchart of the proposed method.  
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computation burden greatly. 
The mode points can be obtained using the Mean Shift method. Mean 

Shift is a non-parametric clustering method (Cheng, 1995). Compared to 
the traditional K-means method, Mean Shift does not need to preset the 
number of clusters. Thus, Mean Shift is generally used in the clustering 
or segmentation for unknown scenes. As shown in Fig. 2, Mean Shift is 
an iterated method. In each iteration, the mean shift vector is calculated 
first as the red arrow shown in Fig. 2. The mean shift vector generally 
points to the direction in which the probability density increases. Thus, 
after several iterations, the point will be shifted to a mode point as the 
red point shown in Fig. 2. The points sharing the same or similar mode 
point will be clustered together. 

The mean shift vector is defined as Eq. (1) (Dai et al., 2018). 

Meanshif th
(
Vp
)
=

∑n

i=1
Vi∙G

(⃦
⃦
⃦
⃦

Vp − Vi
h

⃦
⃦
⃦
⃦

2
)

∑n

i=1
G

(⃦
⃦
⃦
⃦

Vp − Vi
h

⃦
⃦
⃦
⃦

2
) − Vp (1)  

where Meanshifth
(
Vp
)

represents the mean shift vector. For three- 

dimensional point clouds, Vp is equal to the three coordinates of point 
p. n is the number of neighboring points of point, which is determined by 

the bandwidth h. G(∙) is the Gaussian function. Specially, when 
⃦
⃦
⃦
⃦

Vp − Vi
h

⃦
⃦
⃦
⃦

is greater than 1, G(∙) is equal to zero. Thus, the bandwidth h will in
fluence the clustering results (Hu et al., 2017). A larger h will lead to 
more points clustered together. Consequently, the results may be under- 
segmentation. On the contrary, a smaller h will lead to over- 
segmentation. In this study, the Mean Shift method is adopted to 
segment the trunk or branches into sections. Thus, the bandwidth h 
generally needs to be larger than diameter of the trunk. In general, h ∈

[0.3, 1.0] is appropriate in this study. 
Fig. 3 shows the process of mode points acquisition. Fig. 3 (a) is the 

raw point clouds of an individual tree. Fig. 3 (b) shows the Mean Shift 
segmentation results. From Fig. 3 (b), it can be found that the trunk or 
branches are segmented into sections, while leaf points segmented into 
small clusters. For the Mean Shift segments, the mode points are kept. 
Finally, the individual tree can be represented by the mode points as 
shown in Fig. 3 (c). 

2.2. Graph construction and shortest path analysis 

When the mode points are acquired, these mode points can be used to 
construct the graph. Compared with the methods using all the points as 
the nodes, the proposed method is obviously fast, easy to implement and 
computational burden reduced. The graph is composed of nodes and 
edges, which can be represented as Graph = (Node, Edge). As mentioned 
above, the nodes are the mode points in this paper. Obviously, each two 
nodes will have an edge. To make the graph less complicated, this paper 
made the following constraint as Eq. (2). 

Edge
(
pi, pj

)
=

{
dis
(
pi, pj

)
, if dis

(
pi, pj

)
⩽r

false, otherwise
(2)  

where Edge
(

pi, pj

)
is the edge between nodes pi and pj, dis

(
pi, pj

)
is the 

Euclidean distance between the two nodes, r is the constraint radius. Eq. 
(2) means that if pj is the neighbor of pi within the radius r, the edge 
between nodes pi and pj is existed. Moreover, the edge weight is equal to 

Fig. 2. Mean Shift clustering process.  

Fig. 3. The process of mode points acquisition. (a) The raw point clouds colored based on elevation; (b) Mean Shift segmentation results with each segmentation 
randomly colored; (c) The mode points colored based on elevation. 
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the Euclidean distance between the two nodes. If dis
(

pi, pj

)
is larger than 

r, Edge
(

pi, pj

)
is non-existed. Obviously, the radius r will influence the 

graph construction. If r is smaller, the connected components in the 
graph will be less, which will make it difficult to conduct the following 
shortest path analysis. However, the radius r cannot be set too large. If r 
is too large, the graph will be complicated. The process of generating the 
graph will be time-consuming. In this paper, r can be set between 1.5 m 
and 2 m experimentally. The influence of the radius r will be discussed in 
the following Discussion section. 

When the graph is constructed, shortest path analysis can be con
ducted for each node to the base node. The base node is set as the mode 
point with the lowest elevation. In other words, the base node represents 
the tree root, while the other nodes represent trunks, branches or leaves. 
Since the graph is general connected, each node will have a shortest path 
to the base node. The shortest path is composed of several nodes that the 

end node must pass to the base node. This process can be expressed as 
Eq. (3). 

SP(Graph, base, pm) = {pm, pn,⋯, base} (3)  

where SP(∙) represents the shortest path, Graph is the constructed graph, 
base is the base node, pm is the end node, pn is the node the shortest path 
must be passed. This paper applied the famous Dijkstra’s algorithm to 
obtain the shortest paths. Fig. 4 shows the shortest paths of each node in 
Fig. 3 (c) to the base node. Note that Fig. 4 is not the graph structure of 
the nodes. Fig. 4 shows the shortest paths of all the nodes to the base 
node. Although there are many paths from the end node to the base 
node, only the shortest paths obtained using the Dijkstra’s algorithm are 
shown in Fig. 4. That’s why the leaf nodes are not connected in the 
graph. From Fig. 4, it can be found that the shortest paths can basically 
reflect the tree structure. 

2.3. Leaf nodes detection based on pass retracing and nodes evolution 

As shown in Fig. 4, the leaf nodes are general at the extremities of 
each path. According to this characteristic, some leaf nodes can be 
detected by pass retracing. In this paper, pass retracing means removing 
successive nodes from the end node towards the base node. The removed 
nodes are determined by the retracing steps. Since the leaf nodes are 
general the end node, this paper just needs to retrace one step for each 
path. For instance, after one step path retracing, the shortest path for the 
node pm in Eq. (3) will be {pn,⋯, base}. In other words, the end node 
{pm} is removed. 

The shortest paths in Fig. 4 after path retracing are shown in Fig. 5. It 
can be found that the leaf nodes at the extremities are excluded in the 
paths successfully. However, some nodes that are not at the extremities 
are also not concluded in the paths. It is because the shortest path is 
trying to find the shortest way to the base node. Some nodes may not be 
visited. To detect accurate leaf nodes, the nodes that are not at the ex
tremities must be discriminated. It should be noted that the path 
retracing adopted in this paper tries to detect the leaf nodes at the ex
tremities. Thus, when all the non-leaf nodes that are not at the ex
tremities are detected, the remaining nodes can be seen as the leaf nodes 
at the extremities. 

Considering the fact that the leaf nodes always have larger path 
length, the nodes that are not visited can be evolved as non-leaf nodes if 
their path lengths to the base node are smaller than the ones of the nodes 
on the paths (such as the red points in Fig. 5). In this paper, the nodes 

Fig. 4. Shortest paths of all the nodes to the base node.  

Fig. 5. The result of path retracing. The red points are the nodes that the paths 
passing through, while the other points are the other nodes in the graph. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 6. The comparison of Euclidean distance and commute-time distance be
tween nodes A and B. The red line represents the Euclidean distance, while the 
blue line represents the commute-time distance. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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that the paths passing through are called as seed nodes. For each seed 
node pi

seed, its neighboring nodes are first located according to Eq. (4). 
⎧
⎨

⎩

neighborspi
seed

=
{

pj
⃒
⃒ctd
(
pi, pj

)
⩽D, j = 1, 2,⋯, n

}

ctd
(
pi, pj

)
= SPL

(
pi, pj

) (4)  

SPL
(
pi, pj

)
=
∑

SP
(
Graph, pi, pj

)
⋅weights (5)  

where pj is the node in the graph, n is the number of nodes in the graph, 

ctd
(

pi, pj

)
is the commute-time distance between nodes pi and pj, which 

can be calculated according to the shortest path as Eq. (5). Here, weights 
is the edge weight between each two nodes in the path. D is the 

neighboring distance. In this paper, D is set to 1.5 m. 
Note that here the commute-time distance instead of Euclidean dis

tance is calculated between nodes. The commute-time distance is pro
posed in this paper is because that the commute-time distance can better 
reflect the position relation between nodes. Fig. 6 is a sketch map of the 
tree structure, which is formed by a series of nodes. In other words, any 
point on the tree can be seen as a node. As shown in Fig. 6, “A” and “B” 
are two nodes. The red line between “A” and “B” represents the 
Euclidean distance, which can be calculated based on the three- 
dimensional coordinates of “A” and “B” directly. The blue line repre
sents the commute-time distance between “A” and “B”, which can be 
calculated according to Eq. (5). It is because that the commute-time 
distance refers to the path length. The node “A”must pass some other 
nodes to reach node “B”. Since the node evolution mentioned in this 
paper tries to evolve the nodes on the same path, such as the nodes on 
the same branch or on the same trunk, the nodes on different paths 
should not be considered as the neighboring nodes. For instance, in 
Fig. 6, node “B” will be one neighbor of node “A” if the Euclidean dis
tance is considered. Yet, if commute-time distance is selected, node “B” 
will not be in the neighborhood of node “A”. Obviously, the latter is right 
since node “A” and node “B” are on the different branches. 

When the neighbors of each seed node are found, the evolution can 
be conducted to each seed node. If the node pi meets the following 
conditions, pi will be evolved as a non-leaf node. This can be expressed 
as Eq. (6). 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pi ∈ {Non − leaf}
, if

SP(Graph, base, pi)⩽SP
(
Graph, base, pi

seed

)

pi ∈ neighborspi
seed

pi ∈ {Leaf}, otherwise

(6)  

where SP(Graph, base, pi)⩽SP
(
Graph, base, pi

seed
)

means the path length of 
pi is smaller than that of the seed node pi

seed. Since pi
seed is a non-leaf node, 

pi will also be a non-leaf node. After the nodes evolution based on Eq. 
(6), all the nodes with shorter path lengths than the ones of seed nodes 
will be evolved as non-leaf nodes. As shown in Fig. 7, all the evolved 
non-leaf nodes are colored in red. By contrast, the left nodes (the blue 

Fig. 7. Leaf nodes detection by seed nodes evolution. The red nodes represent 
non-leaf nodes. The blue nodes are leaf nodes. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Fig. 8. Tree mode points colored by node visiting frequency. (a) The nodes visiting frequency without calculating logarithm; (b) The nodes visiting frequency with 
calculating logarithm. 
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nodes in Fig. 7) can be detected as leaf nodes. From Fig. 7, it can be 
found that after evolution the leaf nodes at the extremities are detected 
successfully. It should be noted that the leaf nodes detected here are not 
all the leaf nodes in the graph. 

2.4. Wood nodes detection based on path frequency and nodes evolution 

As shown in Fig. 4, every node has a shortest path to the base node. 
Each path contains the nodes that the path passing through as listed in 
Eq. (3). All the paths will contain the nodes that have been visited. 
Obviously, the nodes at the trunk or branches have a higher visiting 
frequency. It is because that most paths must pass these nodes to reach 
the base node. On the contrary, the leaf nodes will have a lower visiting 
frequency. As shown in Fig. 8 (a), the tree mode points are colored ac
cording to the nodes visiting frequency. It can be found that some nodes 
may be visited more than 600 times, while some nodes may be just 
visited only once. To narrow down the range of visiting frequency, this 
paper calculates the logarithm of the frequency. The result is shown in 
Fig. 8 (b). It is easy to find that the comparison of visiting frequency of 
different nodes is more distinct. The nodes at the trunk or branches 
generally have a larger visiting frequency, while the nodes at the 

extremities generally have a smaller visiting frequency. However, it can 
also be found that some nodes at the trunk also have a smaller visiting 
frequency. Some nodes are not even visited. It is because that the short 
path tries to find a way to the base node with a smallest path length. 
Thus, some nodes may not be passed. That’s why wood nodes should be 
further evolved to acquire the final wood detection results. 

As mentioned above, the nodes with higher visiting frequency are the 
wood nodes. It can be expressed as Eq. (7). 

{Wood} =
{

pi

⃒
⃒
⃒log

(
fpi

)
⩾δ⋅max(log(f ) ), i = 1, 2,⋯, n

}
(7)  

where fpi is the times of node pi has been visited, max(log(f) ) means the 
maximum of the logarithm of the nodes visiting times, n is the number of 
the nodes. δ is a constant, which determines the wood nodes detection 
result. A smaller δ will lead to more nodes to be detected as wood nodes, 
while a larger δ will lead to fewer nodes to be detected as wood nodes. In 
this paper, δ is set to 0.5. The influence of this parameter to the wood 
nodes detection will be discussed in the Discussion section. 

According to Eq. (7), the wood nodes detection results are shown in 
Fig. 9. It can be found that the nodes on the trunk or branches (red points 
in Fig. 9) are detected successfully. However, not all the wood nodes are 
recognized. The omission error for wood detection is large. This paper 
conducts wood nodes evolution to reduce the omission error. 

In this paper, the wood nodes detected by Eq. (7) are named as wood 
seed nodes. In the process of wood evolution, the evolved wood nodes 
should meet the following three conditions: i the path length of the 
evolved wood node to the base node should be smaller than that of the 
wood seed node; ii the node should not belong to the leaf nodes which 
have been detected in Section 2.3 (Eq. (6)); iii the verticality of the nodes 
should be similar, which can be expressed as Eq. (8). 

abs
(
abs
(
Verticality

(
pj
) )

− abs(Verticality(pi) )
)
⩽η (8)  

where abs() means the absolute value, Verticality() is the verticality of 
the node, and η is the verticality threshold, which determines the evo
lution condition. In this paper, η is set to 0.125. The influence of verti
cality threshold η will be discussed in the following Discussion section. 

The condition i is based on a principle that the leaf nodes always 
have a longer path distance to based node than that of wood nodes. In 
other words, if pj is one neighbor of the wood seed node pi, pj will be 

evolved as a wood node only if SPL
(

base, pj

)
is smaller than 

SPL(base, pi). The condition ii limits the range of evolution. When the 
leaf nodes detected in Section 2.3 have been reached the evolution will 
be stopped. The condition iii set the basic rule for evolution. That is the 
verticality of the evolved wood node should be similar to the wood seed 
node. It is because that only the nodes on the same trunk or branch can 
be evolved. The verticality of each node can be calculated according to 
Eq. (9). 
{

Verticality(pi) = normalz(pi)

normal(pi) = Vectorpi
λ3

(9)  

where normalz(pi) is the z component of normal vector normal(pi). The 
normal vector can be calculated as the eigen-vector corresponding to the 
smallest eigenvalue λ3. The eigen-vectors and eigenvalues can be 
calculated using the principal component analysis (PCA) by constructing 
a covariance matrix as Eq. (10). 

Cov(pi) =
∑n

i=1
(pi − p)(pi − p)T

/n (10)  

where p is the center of the neighboring points of pi. n is the number of 
neighboring points. In this paper, n is set to 10. The steps of wood nodes 
evolution are described in Table 1. Note that wood nodes evolution run 
only once. After evolution, the wood nodes can be detected successfully 
as shown in Fig. 10 (a). From Fig. 10 (a), it can be found that most 

Fig. 9. Wood nodes detection based on node visiting frequency. The red points 
are the detected wood nodes. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Steps of wood nodes evolution.  

Input: Wood seed nodes pi, pi ∈ {Wood}, i = 1,2,⋯,m 
Verticality threshold η  

Step 1: Calculate the neighboring nodes (neighborspi ) of wood seed node pi 

according to Eq. (4).  
Step 2: For each node pj ∈ neighborspi , calculate its shortest path length SPL

(
base,

pj

)
according to Eq. (5) and calculate its verticality Verticality

(
pj

)

according to Eqs. (9) and (10).  
Step 3: Evolution constraints: 

SPL
(

base, pj

)
⩽SPL(base, pi)&& 

pj ∕∈ {Leaf}&& 

abs
(

abs
(

Verticality
(

pj

))
− abs(Verticality(pi) )

)
⩽η  

Step 4: If Yes, {Wood} = {Wood} ∪
{

pj

}
.  

Output: Final wood nodes {Wood}
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undetected wood nodes in Fig. 9 are recovered successfully. As 
mentioned in Section 2.2, the nodes in the graph are the mode points, 
which are obtained by the Mean Shift segmentation in Section 2.1. Each 
mode point corresponds to one segment. Thus, the final wood points can 
be obtained by merging all the segments that corresponds to the wood 
nodes. The final wood points are shown in Fig. 10 (b). 

3. Experimental results and analysis 

To evaluate the performance of the proposed method, this paper 
adopted nine publicly available individual tree samples for the testing. 
The individual tree samples are provided by Moorthy et al. (2020), Xi 
et al. (2020) and Wang et al. (2020), respectively. Although there are 
many other tree samples in these three publicly available datasets, this 
paper only selected some representative tree points with different spe
cies and different structural features for the testing the robustness of the 
proposed method towards different forest environments. The validation 
data description for the tree samples are shown in Table 2. It can be 
found that there are seven different tree species that are concluded in 
these testing tree samples, including tropical forest tree, lowland trop
ical moist forest tree, peat swamp forest tree, terra firme forest tree, 
lodgepole pine, norway spruce and sugar maple. Thus, it will be useful 
for evaluating the stability and generalization of the proposed method 

towards different tree species. From Table 2, it can also be found that 
these nine tree samples are located in six different countries and are 
acquired using different laser scanners. Thus, it will be useful for testing 
the stability of the proposed method towards different forest environ
ments and the points obtained by different laser scanners. As shown in 
Fig. 11, the nine tree samples show different tree structures and the tree 
heights are varying from 22.39 m to 38.73 m (Table 2). These charac
teristics also help to evaluate the generalization and uncertainty of the 
proposed method. All the nine individual trees are manually classified as 
wood and leaf using the visual software, such as CloudCompare. Thus, it 
will be easy to evaluate the performance of the proposed method. 

In this paper, three kinds of accuracy indicators, including accuracy, 
F1 score and Kappa coefficient were calculated to access the perfor
mance of the proposed method. These three accuracy indicators can be 
calculated according to the confusion matrix as tabulated in Table 3. 
Accuracy represents the ratio of correctly classified points to the total 
number of point clouds. It can be calculated according to Eq. (11). The 
F1 score (F1) can be calculated using precision (P) and recall (R) ac
cording to Eq. (14). Precision (P) represents the ratio of the classified 
true positive samples to the classified positive samples, which can be 
calculated using Eq. (12). Recall (R) represents the ratio of classified true 
positive samples to the reference positive samples, which can be 
calculated using Eq. (13). It should be noted that when the wood points 
are treated as a positive class, the F1 score for wood can be calculated. 
When the leaf points are treated as a positive class, the F1 score for leaf 
can be calculated. Thus, this paper calculates F1 scores for wood and 
leaf, respectively. Kappa coefficient is another indicator for accessing 
the classification accuracy, which can be calculated using proportionate 
agreement (po) and probability of random agreement (pe) according to 
Eqs. (15)–(17). 

Accuracy =
TP + TN

TP + FP + FN + TN
(11)  

P =
TP

TP + FP
(12)  

R =
TP

TP + FN
(13)  

Fig. 10. The detected wood nodes and final separated wood points. (a) The wood nodes after evolution; (b) The final separated wood points. The red points are wood 
points, while the other leaf points are colored according to elevation. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Table 2 
Validation data description.  

Tree 
samples 

Tree species Region Scanner Tree 
height (m) 

1 Tropical forest tree Ghana RIEGL VZ-400 38.41 
2 Tropical forest tree Ghana RIEGL VZ-400 34.18 
3 Lowland tropical 

moist forest tree 
Guyana RIEGL VZ-400 34.19 

4 Peat swamp forest 
tree 

Indonesia RIEGL VZ-400 26.47 

5 Terra firme forest 
tree 

Cameroon Leica C10 
Scanstation 

38.73 

6 Terra firme forest 
tree 

Cameroon Leica C10 
Scanstation 

22.45 

7 Lodgepole pine Canada Optech Ilris HD 22.39 
8 Norway spruce Finland Leica HDS6100 27.05 
9 Sugar maple Canada Optech Ilris HD 23.25  
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F1 = 2∗
P∗R

P + R
(14)  

po = (TP + TN)/N (15)  

pe = ((TP + FN)∗(TP + FP) + (FP + TN)∗(FN + TN) )/(N∗N) (16)  

kappa = (po − pe)/(1 − pe) (17) 

Fig. 11. The datasets used for testing. (a) and (b) are tropical forest trees located in Ghana; (c) is the lowland tropical moist forest tree located in Guyana; (d) is the 
peat swamp forest tree located in Indonesia; (e) and (f) are terra firme forest trees located in Cameroon; (g) is the lodgepole pine located in Canada; (h) is the Norway 
spruce located in Finland and (i) is the sugar maple located in Canada. (a) and (b) are the datasets provided by Moorthy et al. (2020); (c), (d), (g), (h) and (i) are the 
datasets provided by Xi et al. (2020); (e) and (f) are the datasets provided by Wang et al. (2020). The tree points are colored based on the elevation of each point. 
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where Tp is the number of the correctly classified wood points. FN is the 
number of wood points that are wrongly classified as leaf points. FP is the 
number of leaf points that are wrongly classified as wood points. TN is 
the number of the correctly classified leaf points. P is the ratio of the 
classified true positive samples to the classified positive samples. R is the 
ratio of classified true positive samples to the reference positive samples. 
F1 is the F1 score, which is a harmonic average of precision (P) and recall 
(R).N in Eqs. (16) and (17) is the number of all the points. po is the 
proportionate agreement, while pe is the probability of random agree
ment. kappa is the Kappa coefficient, which measures the relationship 
between beyond-chance agreement and expected disagreement. 

The four accuracy indicators (Accuracy, F1 score for wood, F1 score 
for leaf and kappa) calculation results of the proposed method are shown 

in Table 4. It can be found that in addition to sample8, all the accuracies 
of other eight tree samples are higher than 0.8. As a result, the average 
accuracy of these nine tree samples is 0.892. This indicates that the 
proposed method has a good wood and leaf classification performance 
towards different trees with different structural features. In terms of F1 
score, both the average F1 scores for wood and leaf are higher than 0.85. 
Thus, it can be concluded that the proposed method has a good balance 

Table 3 
Confusion matrix.    

Classification   

Wood Leaf 

Reference Wood TP  FN  

Leaf FP  TN   

Table 4 
The accuracy indicators calculation results of the proposed method.  

Tree samples Accuracy F1 score wood F1 score leaf κappa 

1 0.914 0.867 0.936 0.803 
2 0.931 0.902 0.947 0.849 
3 0.925 0.868 0.948 0.816 
4 0.970 0.981 0.928 0.909 
5 0.969 0.968 0.970 0.938 
6 0.928 0.900 0.944 0.844 
7 0.826 0.794 0.849 0.644 
8 0.767 0.749 0.782 0.532 
9 0.801 0.806 0.795 0.605 
AVE 0.892 0.871 0.900 0.771  

Table 5 
The comparison of average of accuracy, F1 score for wood, F1 score for leaf and 
kappa coefficient.   

Accuracy F1 score 
wood 

F1 score 
leaf 

κappa 

LeWoS_NoRegu (Wang et al., 
2020) 

0.848 0.794 0.864 0.665 

LeWoS_Regu (Wang et al., 
2020) 

0.890 0.845 0.903 0.753 

CANUPO (Brodu and Lague, 
2012) 

0.820 0.794 0.821 0.629 

The proposed method 0.892 0.871 0.900 0.771  

Table 6 
The comparison of Type I and Type II errors.  

Tree 
samples 

Type I error Type II error 

LeWoS_NoRegu  
(Wang et al., 
2020) 

LeWoS_Regu  
(Wang et al., 
2020) 

CANUPO  
(Brodu and 
Lague, 2012) 

The proposed 
method 

LeWoS_NoRegu  
(Wang et al., 
2020) 

LeWoS_Regu  
(Wang et al., 
2020) 

CANUPO  
(Brodu and 
Lague, 2012) 

The proposed 
method 

1 0.326 0.401 0.229 0.141 0.032 0.004 0.082 0.060 
2 0.211 0.130 0.146 0.086 0.091 0.028 0.097 0.060 
3 0.305 0.274 0.261 0.180 0.033 0.003 0.029 0.030 
4 0.165 0.101 0.074 0.029 0.013 0.004 0.026 0.036 
5 0.108 0.048 0.063 0.047 0.085 0.027 0.160 0.015 
6 0.170 0.097 0.110 0.100 0.089 0.044 0.637 0.056 
7 0.349 0.390 0.423 0.194 0.032 0.009 0.028 0.159 
8 0.504 0.479 0.256 0.291 0.033 0.030 0.360 0.178 
9 0.385 0.199 0.146 0.109 0.071 0.035 0.157 0.278 
AVE 0.280 0.235 0.190 0.131 0.053 0.020 0.175 0.097  
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Fig. 12. The accuracy of the four classification results towards these nine 
tree samples. 
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Fig. 13. The F1 score for wood of the four classification results towards these 
nine tree samples. 
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Fig. 14. The F1 score for leaf of the four classification results towards these 
nine tree samples. 
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when classifying wood and leaf. In other words, the proposed method 
does not tend to classify more wood points as leaf points. Meanwhile, the 
method also does not tend to classify more leaf points as wood points. 
Although the kappa coefficient is not as good as the accuracy, the 
average of kappa coefficient is still higher than 0.75. Thus, it can be 
concluded that the proposed method has a good generation towards 
different tree species. 

To objectively evaluate the proposed method, two other famous 
wood and leaf classification methods, namely LeWoS and CANUPO are 

also adopted for testing their performance towards these six tree sam
ples. LeWoS was proposed by Wang et al. (2020) recently. LeWoS be
longs to the geometric feature based methods. Different from the other 
point-wise approaches, LeWoS first segments the tree points into clus
ters using a graph-based segmentation method. By calculating the 
linearity and size of each segment, the tree points can be classified as 
wood and leaf points, respectively. To obtain an improved labeling 
result, Wang et al. (2020) applied the class regularization technique to 
the classification result mentioned above. Thus, LeWoS can provide two 
wood and leaf classification results based on with or without regulari
zation. In LeWoS, there is only one parameter that needs to be deter
mined. The parameter is the threshold for controlling the feature 
similarity. Wang et al. (2020) set the threshold to 0.15 in their study. 
Thus, in this paper we also adopted this default value for testing the 
performance of the LeWoS. CANUPO was proposed by Brodu and Lague 
(2012). CANUPO is a classic machine learning method for point clouds 
classification since it calculates multiscale geometric features for each 
point. In so doing, more geometric difference between wood and leaf 
points can be captured. Thus, the classification result will be better. 
Moreover, calculating multiscale geometric features will avoid selecting 
the optimal neighboring size when calculating the single-scale feature. 
Therefore, CANUPO is a representative supervised learning method. In 
CANUPO, only two parameters need to be set. One is the scales, while 
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Fig. 15. The kappa coefficient of the four classification results towards these 
nine tree samples. 

Fig. 16. The distribution of Type I and Type II errors 
for tree sample 1. (a) The classification results of LeWoS 
without class regularization; (b) The classification re
sults of LeWoS with class regularization; (c) The clas
sification results of CANUPO; and (d) The classification 
results of the proposed method. The red points are the 
correctly classified wood points. The blue points are the 
correctly classified leaf points. The yellow points are the 
wrongly classified wood points. The green points are 
the wrongly classified leaf points. (For interpretation of 
the references to colour in this figure legend, the reader 
is referred to the web version of this article.)   
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the other one is the number of maximum core points. The scales deter
mine the geometric features calculated in different neighboring sizes. 
Brodu and Lagure (2012) set the default number of scales as 10. The 
minimum scale is 0.1 m, while the maximum scale is 1 m. The core 
points are the sub-sampling points of the scene, which can speed up the 
efficiency of the multi-scale features calculation. Brodu and Lagure 
(2012) set the default number of core points as 10000. In this paper, we 
applied all these default parameters in CANUPO to realize the wood and 
leaf separation. The reason for selecting LeWoS and CANUPO for com
parison is that LeWoS is an open-source Matlab tool and CANUPO has 
been integrated in a famous free software named CloudCompare. Thus, 
the comparison results using these two methods will be objective. 

This paper calculated the average value of the four accuracy in
dicators (Accuracy, F1 score for wood, F1 score for leaf and kappa) as 
tabulated in Table 5. It is easy to find that the proposed method performs 
the best in terms of accuracy, F1 score for wood and kappa. The average 
F1 score for leaf of the proposed method is only slightly lower than that 
of the LeWoS with regularization. The average accuracy of the proposed 
method is nearly 0.9. It indicates that although seven different tree 

species were testing in this paper, most tree points are correctly classi
fied as wood and leaf, respectively. Thus, it can be concluded that the 
proposed method has a good wood and leaf classification performance 
towards different tree samples with different tree species. The general
ization of the proposed method is good. Meanwhile, as shown in Table 2, 
the tree samples were acquired using different laser scanners from six 
different countries. Both the average F1 scores for wood and leaf of the 
proposed method are higher than 0.85. It means that the proposed 
method has a good balance when detecting woods and leaves from 
different forest environments. Therefore, the stability of the proposed 
method is better when comparing with other two methods. 

To further analysis the classification errors, this paper further 
calculated Type I and Type II errors of these four classification results. 
Type I error is also named as omission error. When wood is treated as a 
positive class, Type I error means the percentage of wood points mis
classified as leaf points. Type II error is also named as commission error. 
That is the percentage of leaf points misclassified as wood points. Ac
cording to the confusion matrix tabulated in Table 3, Type I and Type II 
errors can be calculated as Eqs. (18) and (19). 

Fig. 17. The distribution of Type I and Type II errors 
for tree sample 6. (a) The classification results of LeWoS 
without class regularization; (b) The classification re
sults of LeWoS with class regularization; (c) The clas
sification results of CANUPO; and (d) The classification 
results of the proposed method. The red points are the 
correctly classified wood points. The blue points are the 
correctly classified leaf points. The yellow points are the 
wrongly classified wood points. The green points are 
the wrongly classified leaf points. (For interpretation of 
the references to colour in this figure legend, the reader 
is referred to the web version of this article.)   
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T1 =
FN

TP + FN
(18)  

T2 =
FP

FP + TN
(19) 

Type I and Type II errors of these four classification results are shown 
in Table 6. It is easy to find that the proposed method achieved the 
smallest average Type I error (0.131). It indicates that the proposed 
method can detect as more wood points as possible. Although Type II 
error of the proposed method is a little larger than that of the LeWoS 
with regularization, Type I error of the proposed method is much lower 
than that of the LeWoS with regularization. Moreover, the proposed 
method can achieve a good balance between Type I and Type II errors. In 
the proposed method, both the average of Type I and Type II errors are 
smaller than 0.15. Comparing with other methods, Type I error of the 
LeWoS without regularization is over five times of its Type II error, while 
Type I error of the LeWoS with regularization is over ten times of its 
Type II error. 

Fig. 18. The distribution of Type I and Type II errors 
for tree sample 8. (a) The classification results of LeWoS 
without class regularization; (b) The classification re
sults of LeWoS with class regularization; (c) The clas
sification results of CANUPO; and (d) The classification 
results of the proposed method. The red points are the 
correctly classified wood points. The blue points are the 
correctly classified leaf points. The yellow points are the 
wrongly classified wood points. The green points are 
the wrongly classified leaf points. (For interpretation of 
the references to colour in this figure legend, the reader 
is referred to the web version of this article.)   

Table 7 
Parameter settings in this paper.  

Tree 
samples 

Bandwidth 
h  

Radius 
r  

FrequencyRatio 
δ  

Verticality 
threshold η  

1 0.5 2.0 0.5 0.125 
2 0.65 2.0 0.5 0.125 
3 0.5 2.0 0.5 0.125 
4 0.3 1.5 0.5 0.125 
5 0.3 1.5 0.5 0.125 
6 0.3 1.5 0.5 0.125 
7 0.3 1.5 0.5 0.125 
8 0.3 1.5 0.5 0.125 
9 0.3 1.5 0.5 0.125  
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4. Discussion 

For accurate comparative analysis, four indicators (Accuracy, F1 
score for wood, F1 score for leaf and kappa) of the four classification 
results (LeWoS_NoRegu, LeWoS_Regu, CANUPO and the proposed 
method) are shown in Figs. 12–15. Here, LeWoS_NoRegu is the LeWoS 
classification result without regularization, while LeWoS_Regu is the 
LeWoS classification result with regularization. 

Fig. 12 shows the accuracy comparison results. It can be found that 
the proposed method achieved five highest accuracies in the nine tree 
samples. In addition to the tree sample 8, the proposed methods can 
achieve accuracies higher than 0.8 for all the other eight samples. As 
shown in Table 2, seven different tree species are concluded in the nine 
tree samples. Thus, it can be concluded that the proposed method has a 
good generalization towards different tree species. In terms of sample 8, 
all the accuracies of the four classification results are lower than 0.8. 
From 11 (h), it can be found that this Norway spruce has many tiny 
branches along the tree stem. These tiny branches are easily mis
classified as leaves. This can also be found from the error distributions in 
Fig. 18. Although the classification accuracy of sample 8 is low, the 
proposed method still performs the best when comparing with other 
three classification results. Moreover, it can be found that after class 
regularization, LeWoS can achieve a better classification result than that 
of the LeWoS without regularization. Figs. 13 and 14 are the comparison 

results of F1 scores for wood and leaf. In terms of F1 score for wood, the 
proposed method achieved six highest F1 scores in the nine tree samples. 
As a result, the average F1 score for wood of the proposed method is 
much higher than that of other three classification results (Table 5). In 
addition to sample 8, the three methods performed worse towards 
sample 7. It can be found from Fig. 13, the F1 scores for wood of the four 
classification results towards sample 7 are lower than 0.8. From Fig. 11 
(g), it can be found that sample 7 is the lodgepole pine. Generally, the 
branches or the stem for the pine are difficult for detecting since there is 
lots of occlusion by the leaves. Meanwhile, some dense leaves are prone 
to be misclassified as woods. In terms of the F1 score for leaf, all the 
three methods perform well. As a result, the average F1 scores for leaf of 
the four classification results are higher than 0.8 (Table 5). In terms of 
the kappa coefficient, all the methods perform worse towards sample 8. 
The kappa coefficients for the four classification results are all smaller 
than 0.6. Thus, how to detect the tiny branches for the Norway spruce is 
still challenging. 

For visual analysis of these two kinds of errors, this paper selected 
three tree samples (1, 6 and 8) to show their error distributions. Tree 
sample 1 is selected because all the three methods tend to achieve larger 
Type I error towards this sample. Tree sample 6 is selected because 
CANUPO obtains a very poor classification results in terms of Type II 
error. Tree sample 8 is selected because all the three methods perform 
worse towards this sample no matter accuracy or kappa coefficient is 

Fig. 19. The mode points acquisition results using different bandwidths. (a) Bandwidth is 0.3; (b) Bandwidth is 0.5; (c) Bandwidth is 0.7; (d) Bandwidth is 0.9.  
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adopted. The distributions of Type I and Type II errors are shown in 
Figs. 16–18. In these figures, the red points are the correctly classified 
wood points. The blue points are the correctly classified leaf points. The 
yellow points are the wrongly classified wood points. The green points 
are the wrongly classified leaf points. From Fig. 16 (d), it is easy to find 
that the proposed method achieved a good classification result. More 
wood points are correctly classified. Especially for branches, the pro
posed method performs much better than the other three classification 
results (Fig. 16 (a-c)). Moreover, it can also be found that the mis
classified points of LeWoS and CANUPO are dispersed distribution, 
while the misclassified points of the proposed method mainly concen
trated in the canopy area. The error spatial distribution has a great in
fluence on the following forest applications, such as tree models 
building. The dispersed misclassified points will influence the modeling 
accuracy greatly. From Fig. 17 (a) and (b), it can be found that some 
trunk points are misclassified as leaf points by LeWoS. Although using 
class regularization the class labeling results will be smoothed, some tree 
wood points can also be filtered in this regularization process as shown 
in Fig. 17 (b). As tabulated in Table 6, CANUPO achieved a very large 
Type II error (0.637) for tree sample 6. From Fig. 17 (c), it can be found 
that many leaf points are misclassified as wood points. It may be because 
the geometric features of these leaf points are similar to the ones of wood 
points in this tree sample. These are also the drawbacks of point-wise 

supervised learning method based on geometric features. Satisfactory 
classification results are not always obtained in all cases. Compared to 
other three classification results, the proposed method achieved a much 
better wood and leaf classification result as shown in Fig. 17 (d). Fig. 18 
shows the error distributions of the four classification results in terms of 
sample 8. As shown in Table 6, all the three methods obtained larger 
Type I or Type II errors for sample 8. This can also be found in Fig. 18 (a- 
d). Compared with the results of the LeWoS method (Fig. 18 (a) and (b)), 
CANUPO and the proposed method can detect more tiny branches 
(Fig. 18 (c) and (d)). However, there are many misclassified points that 
are dispersed distribution in the CANUPO classification result. Thus, it 
can be found that although all the three methods have difficulties in the 
wood-leaf separating towards the Norway spruce, the proposed method 
can still achieve a better classification result. 

Four main parameters are involved in this paper, namely bandwidth 
h in Eq. (1), radius r in Eq. (2), frequency ratio δ in Eq. (7) and verticality 
threshold η in Eq. (8). The parameter settings for the nine tree samples in 
this paper are tabulated in Table 7. It can be found that both δ and η are 
set as fixed constant values in this study. To show the influence of these 
parameters, this paper selected tree sample 1 for the testing. 

The bandwidth h mainly affects the Mean Shift segmentation results. 
Since each segment corresponds to a mode point, the bandwidth h has an 
influence on the mode points acquisition. Fig. 19 (a-d) is mode points 

Fig. 20. The paths of each node to the base node in the graph built using different neighboring radiuses. (a) Radius is 1.0 m; (b) Radius is 1.5 m; (c) Radius is 2.0 m; 
and (d) Radius is 2.5 m. 
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acquisition results using four different bandwidths (0.3, 0.5, 0.7 and 
0.9). It is easy to find that when the bandwidth h is smaller, more mode 
points can be acquired as shown in Fig. 19 (a). However, more mode 
points will lead to a complicated network graph. When the bandwidth h 
is larger, less mode points can be acquired. However, less mode points 
cannot reflect the tree structure as shown in Fig. 19 (d). It will be 
difficult for the following mode points evolution. It is really true that 
when h is larger, some leaf points and wood points may be segmented as 
one segment. However, even though the bandwidth h is set smaller, the 
misclassification is still possible. Although when h is smaller the possi
bility of wood-leaf points misclassified together will be lower, the clas
sification results will be over-segmentation. Especially, the stem will be 
segmented into many pieces. Thus, the segmentation results cannot be 
more precise. Meanwhile, the over-segmentation means more mode 
points can be acquired. More mode points don’t only mean more com
plex graph, but the stem points cannot be detected completely and 
accurately. As shown in Fig. 19 (a), there are many mode points in the 
stem. When the shortest path analysis is conducted to this corresponding 
graph, only parts of stem nodes can be detected as wood nodes. It is 
because that not all the stem nodes own a higher visiting frequency. 
Thus, the omission error for wood detection will be larger. This finding 
can also be found in the literature concluded by Vicari et al. (2019). 

In general, the bandwidth should be slightly larger than the trunk 

diameter. In so doing, the trunk points will be replaced as mode points in 
a line. Meanwhile, the mode points can still reflect the tree structure as 
shown in Fig. 19 (b). 

The neighboring radius r mentioned in Eq. (2) mainly affects the 
structure of the built graph. Obviously, a larger radius means more 
neighboring points will form edges, while a smaller radius means less 
neighboring points will form edges. Fig. 20 shows the paths of each node 
to the base node in the graph built using different neighboring radiuses. 
In Fig. 20 (a), it can be found that only some short paths are obtained. It 
is because the neighboring radius is set too small, many nodes in the 
graph cannot have a direct path to the base node. Obviously, this graph 
cannot be used for the following wood nodes extraction. When the 
neighboring radius is set larger, more edges will be involved in the graph 
and the built graph will be complicated. As shown in Fig. 20 (b-d), the 
paths of each node to the base node turn detailed and abundant. How
ever, larger radius means more complex graph, what followed is the 
process of generating the graph will be time consuming. In general, the 
radius setting should be according to the bandwidth. As mentioned 
above, a larger bandwidth will lead to less mode points. Thus, the dis
tance between two neighboring mode points will be larger. To make the 
network graph connected, the neighboring radius should be larger. 
Moreover, to make the graph less complicated and improve imple
mentation efficiency, the radius cannot be set too large. In this study, r ∈

Fig. 21. Wood nodes detection using different frequency ratios. (a) Ratio is 0.3; (b) Ratio is 0.4; (c) Ratio is 0.5; and (d) Ratio is 0.6. The red points are the detected 
wood nodes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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[1.5, 2.0] is appropriate for the tree samples. 
The frequency ratio δ mentioned in Eq. (7) mainly affects how many 

nodes can be detected as wood nodes. Fig. 21 shows the wood detection 
results using different frequency ratios (0.3, 0.4, 0.5 and 0.6). It is easy 
to find that the smaller the ratio is the more wood nodes can be detected. 
That makes sense because when the ratio is set smaller, it means more 
nodes with lower visiting frequency will be detected as wood nodes. This 
can be found in Fig. 21 (a) and (b). Some leaf nodes in the canopy are 
misclassified as wood nodes. Conversely, when the ratio is larger the 
wood nodes on the branches cannot be detected successfully. It is 
because the visiting frequency of the leaf nodes on the branch is not as 
high as the nodes on the trunk. Thus, some wood nodes cannot be 
detected successfully when the ratio is set larger. In this study, the fre
quency ratio is set to 0.5 for all the tree samples. 

The verticality threshold η is a key parameter for wood nodes evo
lution. The verticality threshold is adopted for evolving the nodes with 
similar verticality as wood nodes. Obviously, when the verticality 
threshold is small the evolved wood nodes will be less. As shown in 
Fig. 22 (a), some nodes on the branch cannot be evolved as wood nodes 
successfully. When the verticality threshold is large the evolved wood 
nodes will be more. As shown in Fig. 22 (d), some leaf nodes are mis
classified as wood nodes after the evolution. In this study, when the 

verticality threshold is set between 0.1 and 0.15, the wood nodes can be 
evolved successfully while avoiding the leaf nodes wrongly evolved as 
wood nodes. In this paper, the verticality threshold is set to a constant 
value as 0.125. 

In this study, seven kinds and nine tree samples were adopted for 
testing the performance of the proposed method and satisfied wood and 
leaf separation results were obtained. It must be admitted that we cannot 
test all the tree species for validating the robustness of the proposed 
method. Thus, several different representative tree species with distin
guishable tree structures will be useful for testing the stability of the 
proposed method towards different forest environments. From Fig. 11, it 
can be found that all the nine tested tree samples are taller than 20 m. To 
evaluate the performance of the proposed method towards small trees, 
three low tree samples with different tree species are utilized for further 
testing. As shown in Fig. 23, (a), (c) and (e) are tree samples of Gliricidia 
sepium, Swietenia macrophylla and beech Buche. It can be found that all 
these three tree samples are lower than 10 m. Moreover, all these three 
tree samples are with distinguishable structures. Thus, these three tree 
samples will be representative for showing the robustness of the pro
posed method. In Fig. 23, (b), (d) and (f) are wood and leaf separation 
results of the Gliricidia sepium, Swietenia macrophylla and beech 
Buche. It can be found that the proposed method can achieve promising 

Fig. 22. Wood node evolution results based on different verticality thresholds. (a) Verticality threshold is 0.05; (b) Verticality threshold is 0.10; (c) Verticality 
threshold is 0.15; and (d) Verticality threshold is 0.20. The red points are the wood nodes after evolution. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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Fig. 23. Small tree samples and their corresponding wood and leaf separation results. (a), (c) and (e) are tree samples of Gliricidia sepium, Swietenia macrophylla 
and beech Buche; (b), (d) and (f) are these tree samples’ corresponding wood and leaf separation results. 
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classification results towards these three low tree samples. Although the 
three tree samples are with different tree species and different tree 
structures, the proposed method can detect stems and branches correctly 
for each tree sample. As a result, the classification accuracies for these 
three tree samples are all higher than 0.9. Thus, we can conclude that the 
proposed method can also obtain good wood and leaf classification re
sults towards small trees. 

5. Conclusion 

Wood and leaf separation is a critical process for the forest post- 
applications. To classify wood and leaf points correctly from terrestrial 
LiDAR point clouds for the individual tree, this paper proposed a wood 
and leaf separation method based on mode points evolution. In the 
proposed method, the mode points are acquired using the Mean Shift 
method. Then all the mode points are used to construct a graph network. 
In so doing, the constructed graph will be less complicated and the point- 
wise classification will be transformed into the segment-wise classifi
cation. According to the path retracing result and nodes visiting fre
quency, the wood seed nodes can be detected. By setting three evolution 
constraints, all wood nodes can be evolved successfully. Finally, all the 
segments corresponding to these wood nodes are merged together to 
obtain the final classified wood points. Nine tree samples with different 
tree species are adopted for testing the performance of the proposed 
method. Experimental results show that the proposed method can ach
ieve very good wood and leaf classification results. The average classi
fication accuracy is 0.892. The average F1 score for wood is 0.871, while 
the average F1 score for leaf is 0.900. Compared with other two 
methods, namely LeWoS and CANUPO, the proposed method performs 
better. This paper also compared the Type I and Type II errors of these 
three methods. The proposed method can achieve the smallest average 
Type I error. Meanwhile, the proposed method can keep a good balance 
between the Type I and Type II errors. It means that the proposed 
method can detect the wood points effectively while removing the leaf 
points successfully. Although four parameters are involved in this study, 
frequency ratio and verticality threshold can be set constant values. 
Thus, the proposed method is easy to implement while owing the good 
wood and leaf classification performance. 
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