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H I G H L I G H T S :

• Filtering is seen as a separation of mixed Gaussian models.

• Ground points can be extracted automatically by applying the EM algorithm.

• The fitted surface can be generated using ground seeds.

• Revised elevations can enhance the robustness of the filtering algorithm.
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A B S T R A C T

Filtering of ground points is a key step for most applications of airborne LiDAR point clouds. Although many
filtering algorithms have been proposed in recent years, most of them suffer from parameter setting or thresholds
fine-tuning. This is most often time-consuming and reduces the degree of automation of the applied algorithm.
To overcome such problems, this paper proposes a threshold-free filtering algorithm based on ex-
pectation–maximization (EM). The filter is developed based on the assumption that point clouds are seen as a
mixture of Gaussian models. Thus, the separation of ground points and non-ground points from point clouds is
partitioning of the point clouds by a mixed Gaussian model that is used for screening ground points. EM is
applied to realize the separation, which calculates the maximum likelihood estimates of the mixture parameters.
Using the estimated parameters, the likelihoods of each point belonging to ground or non-ground are computed.
Noticeably, point clouds are labeled as the component with a larger likelihood. The proposed method has been
tested using the standard filtering datasets provided by the ISPRS. Experimental results showed that the pro-
posed method performed the best in comparison with the classic progressive triangulated irregular network
densification (PTD) and segment-based PTD methods in terms of omission error. The average omission error of
the proposed method was 52.81% and 16.78% lower than the classic PTD method and the segment-based PTD
method, respectively. Moreover, the proposed method was able to reduce its average total error by 31.95%
compared to the classic PTD method.

1. Introduction

Airborne light detection and ranging (LiDAR) applications have
been developing very quickly in recent decades. Compared with tradi-
tional remote sensing methods, airborne LiDAR can collect geographic
information efficiently [1,2]. Moreover, weather conditions have no

influence on this technique when gathering point clouds [3]. Thus,
airborne LiDAR has been widely used in many areas, such as digital
terrain model (DTM) extraction [4,5], three-dimensional building
model generation [6,7], road extraction [8,9], forest parameter esti-
mation [10,11], etc.

Although airborne LiDAR is cost-effective when acquiring three-
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dimensional information, processing point cloud data requires con-
siderable time, especially in manual classification. It has been estab-
lished that the manual classification and quality control consume an
estimated 60–80% of processing time [12]. Thus, it is urgent to develop
algorithms to speed up point clouds post-processing efficiency.

To develop algorithms for many other applications, one funda-
mental step is extracting DTM information from point clouds that
contain both ground points and non-ground points [13]. This process is
generally known as filtering. Aiming at realizing filtering effectively,
lots of algorithms have been put forward in the past twenty years. These
filtering algorithms can be categorized into four classes: slope-based,
morphology-based, surface-based, and segmentation-based [1,2,14].

The slope-based approaches always assume that the gradients be-
tween non-ground points and ground points are larger than those be-
tween ground points. Thus, if the slope or height difference between
two points is larger than a pre-defined threshold, the point with higher
elevation will be considered as a non-ground point. Vosselman first
proposed the slope-based algorithm [15]. Many researchers have pro-
posed some modified algorithms based on this pioneering work to make
the traditional method adaptable to complex terrain environments
[16–18]. However, the experimental results show that the performance
of this kind of approach is sensitive to the threshold setting, and when
encountering complicated terrains, the slope-based approaches cannot
achieve satisfactory accuracy [19,20].

In morphology-based approaches, some morphology operations,
namely, dilation, erosion, opening and closing are involved. To realize
this kind of method, the key issue is to choose an appropriate window
size. A large window size will flatten the terrain details, while a small
window size has no effects on filtering large building roofs. To over-
come this problem, Zhang et al. [21] proposed a progressive morpho-
logical filtering method by gradually changing the window size and
threshold. Nonetheless, there are two main problems with this algo-
rithm. First, this method assumes the slope of the entire terrain as a
constant, which is obviously unreasonable in undulation environments.
Second, this method cannot effectively protect the terrain details. To
solve these problems, many modified variants of this traditional work
have been proposed [22–26]. Recently, Hui et al. [27] improved the
progressive morphological filter by combining it with a multi-level in-
terpolation filtering method. Promising results were achieved in com-
plicated terrain environments.

The basic idea of surface-based approaches is to build approximate
terrain surfaces progressively using certain interpolation methods. By
setting some filtering rules, such as residuals to the interpolated surface,
the non-ground points are eliminated iteratively. Kraus and Pfeifer [28]
adopted a linear prediction method and a weight function to filter the
non-ground points step-by-step. A promising result was obtained in
wooded areas. Axelsson [29] first proposed a progressive triangular
irregular network (TIN) densification (PTD) approach. In this method, a
coarse TIN is built initially using some ground seeds with the lowest
elevation in local areas. Then ground points are added to the TIN
iteratively if they satisfy certain criteria, including iteration distance
and angle. The iteration ends when no more points can be added. Hu
et al. [30] adopted thin plate spline (TPS) interpolator to construct a
raster surface. In their method, the bending energy is calculated as a
byproduct of TPS interpolation, which is used to calculate the adaptive
threshold automatically. In doing so, the method does not need cautious
parameter tuning and can yield a better filtering result when optimized.

The segmentation-based approaches always involve two steps: first,
point clouds are segmented based on some methods, namely, 3D Hough
transform [31,32], random sample consensus (RANSAC) [33], region
growing [20,34], scan line segmentation [35,36], etc. Second, certain
rules, such as smoothness or height difference, are applied to dis-
criminate terrain segments from clusters generated in the last step.
Because the segmentation results often contain more semantic in-
formation, many researchers have developed hybrid models that in-
tegrate the segmentation methods with some traditional filtering

methods to improve the filtering accuracy. For example, Tovari and
Pfeifer [37] adopted a region growing algorithm to modify the linear-
prediction method proposed by Kraus and Pfeifer. The experiments
show that the improved method decreases the filtering errors at break
lines. Lin and Zhang [20] further developed the PTD algorithm by first
applying the point cloud smooth segmentation method. In this ap-
proach, a segment, rather than a single point, is processed as a unit.
Thus, the proposed technique preserves discontinuities of landscapes.
Moreover, some lower objects attached to the ground can also be re-
moved successfully. Recently, Chen et al. [38] improved their original
multi-resolution hierarchical classification (MHC) algorithm by first
segmenting the LiDAR points using the region growing method. The
experimental results show that the improved MHC is more accurate
than the original MHC, irrespective of the accuracy measures.

Although most of the proposed methods in the literature yield good
filtering performance, they still require complicated parameter tuning
when encountering various types of terrain, such as urban areas,
mountainous areas, forested areas, etc. Parameter-tuning is generally
time consuming and always incurs heavy manual editing costs. Thus,
these algorithms are not easy for inexperienced users to realize filtering.
To overcome this problem, this paper proposes a parameter-free fil-
tering algorithm based on expectation–maximization (EM). The pro-
posed algorithm is developed based on the assumption that point clouds
are seen as a mixture of Gaussian models. The separation of ground
points and non-ground points from point clouds partitions the point
clouds by a mixed Gaussian model that is used for screening ground
points. EM is applied for realizing the separation. The proposed method
is tested using the datasets provided by the International Society for
Photogrammetry and Remote Sensing (ISPRS). Experimental results
show that the proposed EM method achieves good performance under
variant terrain features without any human manipulation. Thus, the
proposed method will be user-friendly, thereby providing a good
foundation for the automatic algorithm development of post-processing
applications for airborne LiDAR.

2. Methodology

According to the central limit theorem, naturally measured LiDAR
data will lead to a normal distribution [39,40]. Conversely, due to the
complex terrain environments, point clouds can be assumed as a mix-
ture of Gaussian models. Therefore, the separation of ground points and
non-ground points from point clouds can be seen as a separation of a
mixed Gaussian model. EM is an approach for fitting probability dis-
tributions and calculates the maximum likelihood estimates of para-
meters to probabilistic models being fit to the data. When we do not
know which component (ground or non-ground) the point belongs to,
EM can be used to calculate maximum likelihood estimates of the
mixture parameters. Using the estimated parameters, the likelihood of
each point belonging to ground or non-ground can be computed. It is
obvious that the point is labeled as the class corresponding to the
maximum likelihood. Fig. 1 describes the flow chart of the proposed
method. The detailed procedures are presented in Table 1, which
comprise the following three steps: i. outlier removal, ii. revised ele-
vation calculation, and iii. ground point extraction using EM.

2.1. Outlier removal

Due to the influence of external environments or the laser range-
finder malfunction, the acquired point clouds always contain noisy
points, including high and low outliers. Both of these outliers may
disturb the assumed normal distribution; in particular, the low outliers
may have a large influence on the final filtering results. This is because
many filtering algorithms assume that the lowest points belong to
ground points. Both high and low outliers can be removed based on the
fact that their elevations are commonly abrupt compared to their
neighbors.
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Because point clouds are generally irregularly distributed, it is in-
efficient to locate one point’s neighbors. In this paper, the neighbors of
one point refer to the nearest points of one point in the x and y direc-
tions. The brute force nearest neighbor search has computational
complexity O(n), which is linear to the number of points n. To speed up
the search, this paper organizes point clouds using a k-dimensional (kd)
tree [41]. The kd-tree algorithm splits the data in half at each level of
the tree on the dimension for which the data exhibit the greatest var-
iance. The recursive binary splitting can reduce the average complexity
to O(log n). Each non-leaf node (referring to each LiDAR point in the
subspace) can be seen as a segmentation hyper plane, which is per-
pendicular to the coordinate axis and divides the space into two parts.
The main steps of the kd-tree construction are as follows:

i. Determine the split domain. Calculate the variance of the LiDAR
data in the x and y dimensions. Choose the dimension corre-
sponding to the larger variance as the split domain. For instance, we
choose the x dimension as the split domain.

ii. Find the segmentation hyper plane. Sort the LiDAR data in the x

direction and find the midpoint as the segmentation node. The
hyper plane is the one through the segmentation node and per-
pendicular to the x-axis.

iii. Determine the left subspace and right subspace. According to the
hyper plane, the points with x coordinates less than the segmenta-
tion node belong to the left subspace, while the points with x co-
ordinates greater than the segmentation node belong to the right
subspace.

Apply these three steps to the left and right subspaces. The kd-tree
construction is a recursive process. The iteration ends when there is
only one point contained in the subspace. When the kd-tree is built, it
will be easy to find one LiDAR point’s k nearest neighbors. Because the
elevations of the outliers are distinctly different from their neighbors,
for instance, extremely high or low, the k value has little effect on the
final denoising results. k can be set as a constant, such as 5, 7, or 9. In
general, k is set to 10, as suggested by Weinmann et al. (2015) [42].

A point is eliminated if its elevation value changes greatly before
and after the morphological opening operation among its k neighbors.
The morphological opening operation is achieved by performing an
erosion of the dataset followed by a dilation given as Eq. (1):
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where X Y Z( , , )i i i are the coordinates of the neighbors of a point p. E, D
and O are the morphological erosion, dilation and opening operations,
respectively. As shown in Fig. 2(a), there are three kinds of LiDAR
points, including ground points, non-ground points and outliers. Mor-
phological erosion selects the lowest elevation as the point’s new ele-
vation among its neighbors. Thus, the elevations of some non-ground
points, ground points and outliers are lowered to a similar elevation as
their neighbors, as shown in Fig. 2(b). The morphological dilation se-
lects the highest elevation as the point’s new elevation among its

Fig. 1. Flow chart of the proposed method.

Table 1
Algorithmic steps of the proposed method.

Input: point cloud data including X, Y, Z coordinates
Output: ground points after filtering

Step i: Outlier removal
1. Point clouds organized by a k-dimensional tree.
2. K nearest neighbors found.
3. Outlier removal according to Equations (1)–(4).

Step ii: Revised elevation calculation
1. Ground seeds selection.
2. Fitted surface built based on least-squares fitting.
3. Revised elevations calculation.

Step iii: Ground point extraction using EM
1. Apply EM algorithm to the revised elevations.
2. Calculate the posterior probabilityP G p( | ).
3. IfP G p( | ) > 0.5, the corresponding point is labeled as ground points.
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neighbors. Note that the morphological opening applies the dilation to
the erosion result. Thus, it can be found in Fig. 2(c) that some non-
ground points’ elevations are recovered after the dilation because their
neighbors own higher elevations. According to the morphological
opening result, the elevation change dH for each point can be calcu-
lated as Eq. (2).

= −dH Z O p( )p (2)

where Zp is the point p’s elevation, and O p( ) is the point p’s new ele-
vation after morphological opening. It is easy to find that the elevation
changes for outliers (Fig. 2(d)) are obviously large. Therefore, the
outliers can be detected if the elevation changes are greater than the
threshold as shown in Fig. 2(d). This can be represented in Eq. (3) as
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The threshold for each point can be calculated automatically ac-
cording to Eq. (4):

⎧

⎨

⎪
⎪

⎩

⎪
⎪

= ∗

= ∑ −

= ∑

=

=

Z Z

Z Z Z

Z Z

3

( )

th std

std k
m

k

m mean

mean k
m

k

m

1

1

2

1

1 (4)

where Zth is the threshold for detecting outliers, Zstd is the elevation
standard deviation of the neighbors, Zmean is the mean elevation of the
neighbors, and Zm is the elevation of the m-th point among the point p’s
k neighbors. Obviously, the threshold for detecting outliers is different
from point to point, since their neighbors are generally different.

2.2. Revised elevation calculation

As shown in Fig. 3, when encountering abrupt terrains, non-ground
points are commonly mixed with ground points. Some ground point

elevations are even higher than those of the non-ground points. For
instance, the elevation of the ground point P1 on the abrupt terrain is
obviously larger than that of the non-ground point P2 on the building
roof. Thus, if we directly apply the EM algorithm to separate the ground
points and non-ground points, some ground points on the abrupt ter-
rains, such as P1, will be misclassified as non-ground points, while some
non-ground points with lower elevations, such as P2, will be wrongly
classified as ground points. As a result, the method using the EM al-
gorithm cannot perform well in abrupt terrain environments.

The key to correctly separating point clouds using the EM algorithm
is that the non-ground points should be located higher than the ground
points. Thus, instead of using elevations of LiDAR points, this paper
applies the EM algorithm to the revised elevations, which can be cal-
culated by subtracting the interpolated elevations provided by a fitted
surface. This can be expressed using Eq. (5).

= −Z Z Zre int (5)

where Z is the original elevation, Zint is the interpolated elevation, and
Zre is the revised elevation.

In Fig. 3, the dotted line represents the fitted surface built by the
ground seeds, which will be described in Sections 2.2.1 and 2.2.2. The
fitted surface can be seen as a rough DTM. According to the fitted
surface, the revised elevation for each LiDAR point can be obtained.
From Fig. 3, it is easy to find that although the elevation of the ground
point P1 is obviously higher than that of the non-ground point P2, the
revised elevation h1 turns out to be lower than h2. Thus, most revised
elevations of non-ground points are elevated, while the revised eleva-
tions of ground points are changed to be smaller. Therefore, on the basis
of the revised elevations, the mixed ground points and non-ground
points can be distinguished effectively using the EM algorithm.

2.2.1. Ground seed selection
To build a fitted surface, one important step is ground seeds selec-

tion. The ground seeds are points with the lowest elevations in the local
areas. By this means, we can guarantee that the built surface reflects the

Fig. 2. Diagrammatic sketch of the morphological operations: (a) LiDAR points with outliers; (b) morphological erosion result; (c) result of morphological dilation
after erosion; (d) outlier detection based on elevation changes.
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actual terrain fluctuation. To obtain the lowest points, the LiDAR points
are organized as grid cells. As shown in Fig. 4, although more than one
point may fall into one cell, only the lowest point is retained as a
ground seed. All the lowest points in these cells are used for the fol-
lowing fitted surface generation (Section 2.2.2). The grid cells are built
according to Eqs. (6) and (7).
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where Xmin and Ymin are the minimum coordinates of the point clouds,
while Xmax and Ymax are the maximum coordinates of the point clouds.
cellsize is the size of the grid, which is defined as a constant. It should be
larger than the maximum object (mainly refers to the building roof)
size. Thus, 50–70m is generally suitable [36]. floor (Δ) is used to return
the largest integral value that is not larger than Δ. IDi and IDj are the
grid indexes of the point p. M and N are the total number of grids in the
horizontal direction and vertical direction, respectively.

To ensure that the ground seeds are not non-ground points, the grid
size is generally larger than the largest objects in the test site.
Therefore, the number of ground seeds may not be enough to build an
accurate fitted surface. To obtain more ground seeds, this paper makes
the pseudo grids move gradually, as shown in Fig. 4. The grids are

moved in four directions up and down. The moving step is equal to one-
third of the width of a grid.

2.2.2. Fitted surface built based on least-squares fitting
This paper adopts the Least-Squares Fitting method to build the

fitted surface, which is defined as a quadratic polynomial formula (Eq.
(8)):

= + + + + +f X Y λ λ X λ Y λ XY λ X λ Y( , ) 0 1 2 3 4
2

5
2 (8)

where λ0, λ1, λ2, λ3, λ4 and λ5 are coefficients that can be solved using at
least six ground seeds. The error vi of each ground seed can be calcu-
lated according to Equation (9).
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5
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where X Y Z( , , )i i i is the coordinate of the ground seed. Using all the
ground seeds selected in Section 2.2.1, the coefficients λ can be cal-
culated according to the least square principle. Finally, the fitted sur-
face can be built based on these coefficients. Fig. 5(a) shows a digital
surface model (DSM) with complex terrain features. According to the
principle presented in Section 2.2.1, grid cells can be constructed as
shown in Fig. 5(b). Obviously, many LiDAR points will fall into one cell.
To acquire ground seeds, only the point with the lowest elevation is
retained. Finally, all ground seeds are used to build a fitted surface
according to the Least-Squares Fitting method, as shown in Fig. 5(c).
Note that the quadratic polynomial is fitted for the whole area using all
the ground seeds.

2.3. Ground points extraction using EM

To realize the filtering, the posterior probability of a point pi
( = …i n1, 2, , , n is the total number of the LiDAR points) belonging to
ground points (G) should be calculated. It can be determined according
to Eq. (10):

=P G p
P p G P G

P p
( | )

( | ) ( )
( )i

i

i (10)

Similarly, the posterior probability of the point pi belonging to non-
ground points (NG) can also be calculated according to Eq. (11).

=P NG p
P p NG P NG

P p
( | )

( | ) ( )
( )i

i

i (11)

where P p( )i is equal to +P p G P G P p NG P NG( | ) ( ) ( | ) ( )i i , P G( ) and
P NG( ) are the prior probability of ground points and non-ground
points, respectively.

It is obvious that pi will be labeled as a ground point if P G p( | )i is
greater than P NG p( | )i . Since there are two classes, namely, ground
points and non-ground points, formed the mixed Gaussian models, P G( )
and P NG( ) are equal to 0.5. Thus, to obtain the posterior probability of

Fig. 3. Revised elevation calculation based on a fitted surface.

Fig. 4. Grids moved in four directions. In some cells, there is more than one
LiDAR point, and only the lowest point is retained as a ground seed.
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a point belonging to ground points (P G p( | )i ), we need to calculate the
class-conditional density P p G( | )i given in Eq. (12), which can be es-
timated using the EM algorithm. Similarly, P p NG( | )i can also be esti-
mated according to Eq. (12) except for the parameters (C , μ and δ)
values are different from the ones of P p G( | )i .

∑=
=

P p G C Gaussian Z μ δ( | ) ( | , )i
j

j i j j
1

2

(12)

where Cj is the mixing coefficient, Zi is the elevation of the point pi,
Gaussian (·) is the Gaussian equation with parameters μj and δj, which
are the mean and standard deviation of elevations. It can be denoted as
Eq. (13).

Fig. 5. Example of the fitted surface building based on ground seeds: (a) DSM
with complex terrain features; (b) grid cell construction for selecting ground
seeds; (c) fitted surface building using the ground seeds.

Fig. 6. Flow chart of the EM algorithm.

Table 2
Features contained in the 15 samples.

Region Point Spacing Samples Features

Urban 1.0–1.5m samp11 Steep slopes, dense vegetation, data gaps,
and buildings on hillsidessamp12

samp21 Irregular buildings, road networks, tunnels,
bridges, and road networkssamp22

samp23
samp24
samp31 Dense buildings surrounding by vegetation,

data gaps, and mixture of high and low
objects

samp41 Railway station with trains, data gaps, and
dense pointssamp42

Rural 2.0–3.5m samp51 Steep slopes with vegetation, data gaps, and
terrain discontinuitysamp52

samp53
samp54
samp61 Buildings, embankments, data gaps, and

roads
samp71 Bridges, embankments, underpasses, and

roads

Table 3
Metrics of the three accuracy indices. a and b are the numbers of ground points
classified correctly and incorrectly; d and c are the numbers of non-ground
points classified correctly and incorrectly.

Filtering results Metrics of Evaluation

Ground Non-
ground

= +O error b a b_ ( )

Reference Ground a b = +C error c c d_ ( )
Non-ground c d = + + + +Total b c a b c d( ) ( )
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Table 4
Three types of error comparison among the proposed EM algorithm, the PTD algorithm, and the Segment-based PTD algorithm (the bold value is the smallest one).

ISPRS Samples Filtering algorithms

The proposed algorithm PTD algorithm Segment-based PTD algorithm

Omission % Commission % Total % Omission % Commission % Total % Omission % Commission % Total %

samp11 19.94 13.30 17.10 46.68 3.40 28.21 25.67 8.84 18.49
samp12 8.55 5.68 7.14 15.60 1.92 8.93 8.13 3.61 5.92
samp21 1.79 5.23 2.55 0.78 10.47 2.93 1.17 18.23 4.95
samp22 2.90 30.45 11.47 36.84 3.23 26.36 19.05 3.44 14.18
samp23 2.23 16.27 8.86 35.33 3.82 20.42 19.25 4.05 12.06
samp24 19.44 6.80 15.96 40.30 12.54 32.67 22.86 13.41 20.26
samp31 0.21 14.57 6.82 3.93 3.55 3.76 2.10 2.59 2.32
samp41 12.28 10.63 11.45 60.34 0.91 30.55 39.54 1.44 20.44
samp42 11.65 1.02 4.13 12.13 1.45 4.58 9.72 1.55 3.94
samp51 5.56 7.22 5.92 4.91 3.80 4.67 2.05 16.97 5.31
samp52 12.05 8.64 11.69 19.20 4.95 17.70 12.53 16.77 12.98
samp53 26.22 20.52 25.98 26.66 1.44 25.64 4.25 37.22 5.58
samp54 8.46 3.07 5.56 8.76 2.53 5.41 3.59 8.82 6.40
samp61 26.56 7.97 25.92 18.52 2.82 17.98 16.62 2.49 16.13
samp71 5.84 9.94 6.30 16.81 3.50 15.30 10.07 13.39 10.44

Ave 10.91 10.75 11.12 23.12 4.02 16.34 13.11 10.19 10.63
Min 0.21 1.02 2.55 0.78 0.91 2.93 1.17 1.44 2.32
Max 26.56 30.45 25.98 60.34 12.54 32.67 39.54 37.22 20.44
Std 8.33 7.24 7.04 16.82 3.14 10.35 10.45 9.32 6.01

Fig. 7. Filtering result of samp53: (a) the DSM before filtering; (b) the true DTM generated from the true ground points; (c) the filtered DTM generated from the
ground points derived by the proposed filtering algorithm; (d) the cross-section profile (blue line in (b)) of the true DTM; (e) the cross-section profile (blue line in (c))
of the filtered DTM. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The EM algorithm is a general method for fitting probability dis-
tributions. The flow chart of this algorithm is shown in Fig. 6. It in-
cludes the following four steps [43].

i. Initialize mixture parameters, including Cj, μj and δj, =j 1, 2.

In Eq. (12), three kinds of parameters (C , μ and δ) need to be in-
itialized. Since there are two components that form the mixed Gaussian
model, C1 and C2 can be initialized as 0.5. Of course, some other values
are also effective only if C1 plus C2 is equal to one. μ1, μ2, δ1 and δ2 can
be initialized according to Eqs. (14) and (15).
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where Zi is the elevation of the point, n is the number of LiDAR points,
and randn (1) generates one random normal distribution value.

ii. ‘E’ step: compute membership probabilities, namely, P G p( | )i and
P NG p( | )i .

The membership probabilities (belonging to ground points or non-
ground points) for each point can be calculated according to Eqs.
(10)–(13).

iii. ‘M’ step: update mixture component parameters

These parameters are Cj, μj and δj, =j 1, 2. They can be calculated
according to Eqs. (16)–(18).
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Fig. 8. Filtering result of samp61: (a) the DSM before filtering; (b) the true DTM generated from the true ground points; (c) the filtered DTM generated from the
ground points derived by the proposed filtering algorithm. (d) The cross-section profile (blue line in (b)) of the true DTM; (e) the cross-section profile (blue line in (c))
of the filtered DTM. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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where Zi is the elevation of the point pi, n is the total number of LiDAR
points.

iv. Check for convergence

The EM algorithm continues iterating steps ii-iv until it reaches
convergence. The convergence can be estimated by the following con-
ditions:

Providing that Cj
old, μj

old and δj
old ( =j 1, 2) are the parameters of the

last iteration, while Cj
new, μj

new and δj
new ( =j 1, 2) are the newly calcu-

lated parameters. The iteration ends when the absolute norm changes of
the three kinds of parameters are all smaller than the tolerance. The
tolerance can be calculated according to Eq. (19).

= × −tol sigma 100
8 (19)

where sigma0 is the standard deviation of the LiDAR points’ elevations,
which can be calculated according to Eq. (14).

3. Experimental results and analysis

3.1. Test datasets

The test data are the standard filtering benchmark datasets provided
by the ISPRS Commission III/WG3 (http://www.itc.nl/isprswgIII-3/
filtertest/). The datasets located in the Vaihingen/Enz test field and
Stuttgart city center were collected using an Optech ALTM scanner.
There are 15 samples in the datasets, which cover different challenging
filtering features as described in Table 2. The 15 samples consist of nine
urban areas (samp11-samp42) with point spacing of 1–1.5m and six
rural areas (samp51-samp71) with point spacing of 2–2.5 m. Moreover,
for each sample, the reference data are manually selected by the ISPRS
for quantitative assessment of the filtering performance.

3.2. Accuracy indices

Three accuracy indices namely omission error (O error_ ), commis-
sion error (C error_ ) and total error (Total) were adopted in this study to
assess the filtering performance of the proposed EM method. Omission
error is the percentage of rejected ground points as non-ground points,
while commission error denotes the percentage of accepted non-ground
points as ground points. Total error is the percentage of all misclassified
points. The metrics of the three accuracy indices are shown in Table 3.

Fig. 9. Filtering result of samp21: (a) the DSM before filtering; (b) the true DTM generated from the true ground points; (c) the filtered DTM generated from the
ground points derived by the proposed filtering algorithm. (d) The cross-section profile (blue line in (b)) of the true DTM; (e) the cross-section profile (blue line in (c))
of the filtered DTM. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.3. Comparison and assessment

To quantitatively evaluate the performance of the proposed method,
this paper calculated the abovementioned three types of errors
(Table 3) and compared them with those of the classic PTD method [29]
and an improved PTD method based on segmentation proposed recently
[34]. PTD has been a popular algorithm, not only because of its effec-
tiveness and robustness in filtering, but also because of its application in
the TerraScan commercial software. However, the PTD method may fail
to preserve terrain details in areas with steep slopes [34]. To solve this
problem, a segment-based PTD method is proposed. The main im-
provement of this method is embedding segmentation to expend as
many initial ground points as possible. The segment-based PTD method
also tests on the 15 samples provided by the ISPRS. Notably, both the
PTD and the segment-based PTD methods require fine tuning of the
threshold parameters, such as iterative angle and distance, which di-
rectly affect the filtering results. This paper also analyzed the average
value, minimum value, maximum value and standard deviation of these
three errors of the three methods (EM, PTD and segment-based PTD).
The comparison results are shown in Table 4.

From Table 4, it can be observed that the proposed method obtained
lower omission error for 8 samples, including samp11, samp22,
samp23, samp24, samp31, samp41, samp52, and samp71. As a result,
the average omission error of the proposed method is the lowest in
comparison with the PTD and the segment-based PTD methods. The
average omission error of the proposed method is 52.81% and 16.78%

lower than the classic PTD method and the segment-based PTD method,
respectively. In terms of the commission error, the proposed method
and the segment-based PTD method achieve similar accuracy. Both of
their average commission errors are close; however, they are much
higher than that of the PTD method. Although the commission error is
higher for most samples, the proposed method can reduce its average
total error by 31.95% compared to the PTD method. This would sig-
nificantly decrease the cost of manual operation required in post-pro-
cessing. When comparing the average errors, it can be found that the
proposed method achieves a good balance between the average omis-
sion error (10.91%) and the commission error (10.75%). This means
that the proposed method can detect the non-ground points effectively
while preserving terrain details as much as possible. In terms of stan-
dard deviation, the proposed method also performs much better than
the PTD method. All the standard deviations of the three types of errors
are relatively low, which indicates that the proposed method is robust
enough to achieve good filtering performance in different terrain en-
vironments.

It can also be observed that the proposed method obtained the
largest total errors for samp53 and samp61, while samp21 and samp42
achieved the smallest total errors. This paper further analyzed the four
areas before and after filtering as shown in Figs. 7–10. Fig. 7(a) shows
that there are many terrain discontinuities in the area of samp53. Al-
though this paper built a fitted surface based on Least-Squares to revise
the elevations of each point, many ground points are still rejected as
non-ground points (Fig. 7(c)) to lead to the omission error being larger.

Fig. 10. Filtering result of samp42: (a) the DSM before filtering; (b) the true DTM generated from the true ground points; (c) the filtered DTM generated from the
ground points derived by the proposed filtering algorithm. (d) The cross-section profile (blue line in (b)) of the true DTM; (e) the cross-section profile (blue line in (c))
of the filtered DTM. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Compared with the cross-section profiles of the true DTM and the fil-
tered DTM (Fig. 7(d) and (e)), it can also be found that some ground
points are wrongly classified. The reason that the commission error is
higher can be explained by the fact that there are few non-ground
points in this area and even a small number of misclassified points can
make commission error become larger. As shown in Fig. 8(a), there are
embankments in the test area of samp61. The elevations of embank-
ments are similar to those of terrains. In addition, the slope of this area
is slightly larger. Thus, the filtering result in this area is prone to error.
Fortunately, most non-ground points are eliminated effectively when
comparing Fig. 8(b) and (c). However, some terrain details are flattened
as shown in Fig. 8(d) and (e).

The greatest filtering challenge of samp21 is the attached object,
namely, bridge. Compared to the reference filtering result (Fig. 9(b)),
the proposed EM method removed the bridge effectively, as shown in
Fig. 9(c). Because the terrain is relatively flat, the proposed EM method
performed best in this area. It can also be confirmed by the comparison
of Fig. 9(d) and (e) that almost all the LiDAR points are correctly
classified as ground points and non-ground points, respectively. In the
test area of samp42, a railway station with trains is the main object
(Fig. 10(a)). Due to the apparent elevation differences between the
terrains and objects, only a few points are misclassified (Fig. 10(b) and
(c)). The cross-section profiles as shown in Fig. 10(d) and (e) also prove
this. Fig. 11 shows the differences between the truth and the estimated
values. It describes the spatial distributions of the omission and com-
mission errors. In comparison with Fig. 11(a) and (b), it can be found
that the proposed method achieved much lower omission error than
that of the PTD method for samp21. Fig. 11(c) and (d) also show that
there are fewer points misclassified in the result of the proposed
method. That is why the total error of the proposed method (4.13%) is
lower than that of the PTD method (4.58%) for samp42 (Table 4).

Since the ISPRS datasets were obtained almost twenty years ago,
this paper further accessed the performance of the proposed method
using another dataset used in practice. The dataset was acquired using
an Optech ALTM scanner for the city of Jingmen in China with an area

of 1.20 km2 and 984,998 points in total. The average point density of
this dataset was 0.82 points/m2. This dataset covers diverse land-use
and land-cover types including residential buildings, roads, forests and
farmlands as shown in Fig. 12(a). As reported by Maguya et al. (2014),
some challenging conditions with few ground points, such as dense
canopy (red rectangle marked areas in Fig. 12(a)), pose greater chal-
lenges for the filtering algorithm [44]. From the filtering results shown
in Fig. 12(c), the proposed method performs well in these areas. This is
because the fitted surface is built using the ground seeds selected from
the whole area. Although there are few ground points in some dense
forest areas, the fitted surface can still be interpolated correctly using
the ground seeds surrounding these areas. Thus, the revised elevations
can also be calculated correctly according to the fitted surface. The
reference ground points were obtained using Terrascan software com-
bined with manual editing, as shown in Fig. 12(b). Fig. 12(d) and (e)
are cross-section profiles of the true DTM and filtered DTM, respec-
tively. This comparison also proves that the proposed method is sound
and useful with this new dataset. However, as shown in Fig. 12(c), the
rectangle marked area has a large filtering error compared to the re-
ference result in Fig. 12(b). This may be caused by a non-ground point
being wrongly selected as a ground seed, which will lead to the revised
elevations of points in this area being wrongly calculated. Obviously,
the proposed algorithm cannot perform well using revised elevations
with errors. The omission, commission and total errors are 2.81%,
3.45%, and 3.23%, respectively. It can be concluded that the proposed
method can achieve good filtering performance on the modern airborne
LiDAR dataset even if the dataset contains a larger number of points
and covers a larger area.

4. Conclusion

Point cloud filtering is a necessary step in point cloud processing,
analysis and applications. To break through the limitation of complex
parameter settings for the existing filtering algorithms, this paper pro-
posed a threshold-free filtering algorithm based on expectation-

Fig. 11. The differences between the truth and the estimated values. (a) The filtering result of the proposed method for samp21; (b) the filtering result of the PTD
method for samp21; (c) the filtering result of the proposed method for samp42; (d) the filtering result of the PTD method for samp42.
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maximization. In this paper, filtering is seen as a separation of mixed
Gaussian models. By applying the EM algorithm to revised elevations of
point clouds, ground points can be extracted automatically. The revised
elevations for each point are calculated based on the fitted surface built
by ground seeds using the Least-Squares principle. Experimental results
show that the proposed method can achieve better performance
without complex parameter setting or threshold adjustments compared
with the classic PTD method and the segment-based PTD methods in
terms of omission error. The average omission error of the proposed
method is 52.81% and 16.78% lower than the classic PTD method and
the segment-based PTD method, respectively. Moreover, the proposed
method can reduce its average total error by 31.95% compared to the
classic PTD method. Furthermore, all the standard deviations of the

three types of errors of the proposed method are relatively lower, which
indicates that the proposed method is robust enough to achieve good
filtering performance in different terrain environments. Further testing
carried out on a new dataset located in Jingmen, China confirmed this
conclusion. Additionally, the filtering performance is relatively un-
affected by the format and resolution of the airborne LiDAR data.
Therefore, the proposed method can provide a good foundation for the
post-processing of airborne LiDAR point clouds. However, although
omission errors of the new method are small, commission errors are
slightly larger. Controlling the increment of the commission error to be
consistent with the omission error will be the focus in future research.

Fig. 12. Filtering result of Jingmen: (a) the DSM before filtering; (b) the true DTM generated from the true ground points; (c) the filtered DTM generated from the
ground points derived by the proposed filtering algorithm. (d) The cross-section profile (blue line in (b)) of the true DTM; (e) the cross-section profile (blue line in (c))
of the filtered DTM. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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