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Road information acquisition is an important part of city informatization construction. Airborne LiDAR
provides a new means of acquiring road information. However, the existing road extraction methods
using LiDAR point clouds always decide the road intensity threshold based on experience, which cannot
obtain the optimal threshold to extract a road point cloud. Moreover, these existing methods are deficient
in removing the interference of narrow roads and several attached areas (e.g., parking lot and bare
ground) to main roads extraction, thereby imparting low completeness and correctness to the city road
network extraction result. Aiming at resolving the key technical issues of road extraction from airborne
LiDAR point clouds, this paper proposes a novel method to extract road centerlines from airborne LiDAR
point clouds. The proposed approach is mainly composed of three key algorithms, namely, Skewness bal-
ancing, Rotating neighborhood, and Hierarchical fusion and optimization (SRH). The skewness balancing
algorithm used for the filtering was adopted as a new method for obtaining an optimal intensity thresh-
old such that the ‘‘pure” road point cloud can be obtained. The rotating neighborhood algorithm on the
other hand was developed to remove narrow roads (corridors leading to parking lots or sidewalks), which
are not the main roads to be extracted. The proposed hierarchical fusion and optimization algorithm
caused the road centerlines to be unaffected by certain attached areas and ensured the road integrity
as much as possible. The proposed method was tested using the Vaihingen dataset. The results demon-
strated that the proposed method can effectively extract road centerlines in a complex urban environ-
ment with 91.4% correctness and 80.4% completeness.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

With the development of digital cities and smart cities,
constructing a semantically tagged 3D city model is becoming
increasingly important. It is well-known that road layout is one
of the primary compositions in a 3D city model and that the topo-
logical and geometric information provides a full understanding of
the entire city. Additionally, this information could also be used in
other aspects, such as in city planning, navigation and traffic safety.
Due to the significance of road information, there has been a surge
of research interest in road extraction in recent years.

Four decades of road extraction research have passed, dating
back to at least Bajcsy and Tavakoli (1976). From that time, a num-
ber of achievements on road extraction methods from satellite
images have been made. Significant among the techniques applied
are the learning methods (Boggess, 1993; Mnih and Hinton, 2010),
dynamic programming methods (Gruen and Li, 1995, 1997), active
contours methods (Laptev et al., 2000; Agouris et al., 2001), heuris-
tic bottom-up grouping methods (Poullis and You, 2010; Miao
et al., 2013; Poullis, 2014), and CRF model based methods
(Wegner et al., 2013; Montoya-Zegarra et al., 2015). Although
these methods can realize road extraction, three problems are
yet to be resolved due to the characteristics of the satellite image.
These problems are as follows: (1) occlusion caused by trees; (2)
‘‘different objects with same image” or ‘‘same object with different
images”; and (3) shadows caused by tall buildings (Poullis and You,
2010; Weng, 2012; Hu et al., 2014; Montoya-Zegarra et al., 2015).

In order to avoid the aforementioned problems, several studies
attempted to extract road from LiDAR point clouds. Airborne LiDAR
is a new technology which has been developing quickly in recent
years. This method can directly obtain 3D coordinate information
of objects and is easier for modeling. Moreover, airborne LiDAR
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can produce multiple echoes, and this feature weakens the
influence of occlusion caused by trees. The LiDAR point cloud also
contains the intensity information, which helps to improve the
accuracy of road extraction. Owing to these advantages, research-
ers have developed somemethods of extracting road from airborne
LiDAR point clouds. For instance, Clode et al. (2004) used a hierar-
chical classification method to convert LiDAR data into a grid
digital surface model (DSM). The road candidate points were
obtained by filtering from a given distance to the digital terrain
model (DTM) and intensity value. Road patches were later con-
nected to a road network through a morphological closing opera-
tion. However, the correctness of this method is not high,
especially around bridge. In order to improve the efficiency of this
method, Clode et al. (2007) introduced another algorithm called
phase coded disk (PCD) to vectorize the road network image. Com-
pared to the hierarchical classification method, the PCD approach
could obtain better results. Vosselman and Zhou (2009) offered a
method relying on the curbstone detection. As curbstones are
usually located between the road surface and adjacent pavement,
the road sides could be obtained through the detection of locations
with a small vertical jump caused by curbstones. The result
showed that the performance of this method depends on curb-
stones occlusion conditions. Zhu and Mordohai (2009) converted
the road extraction into a minimum cover problem. This approach
does not need heavy computation and could be used for handling
large-scale data. Zhao et al. (2011) applied an expectation maxi-
mization (EM) algorithm to obtain a road candidate image. These
authors developed a radius-rotating method to find road intersec-
tions and sliced roads from these places. A total least squares line
fitting was later used to obtain road centerlines. Although Zhao
et al. (2011) obtained satisfactory completeness and correctness
in linear road extraction, their application to curvilinear road
extraction was still limited. Boyko and Funkhouser (2011)
described a road extraction method that can address a large num-
ber of points with high correctness and completeness. However,
this method needs an approximate 2D map of the road network
as input. Zhao and You (2012) developed a template fitting and
field voting method whereby elevated roads could also be
extracted. Hu et al. (2014) proposed a method called MTH, which
represented three main famous algorithms, namely, Mean shift,
Tensor voting and Hough transform. The mean shift algorithm
was used for clustering road center points. To enhance salient lin-
ear features, the tensor voting algorithm was applied. Finally, the
Hough transform algorithm was used to extract road centerlines.
Compared with the phase coded disk (PCD) (Clode et al., 2007)
method and template matching (TM) (Hu and Tao, 2005), the
MTH method yielded the best outcome. Recently, Li et al. (2015)
offered a semi-automatic approach to extract road networks.
Firstly, road seeds were manually selected, and a region-growing
algorithm was used to obtain the initial road area. Next, road
centerlines were extracted using the fast parallel thinning
algorithm. By combining the automatic algorithm with manual
modification, incorrectly extracted roads could be removed.

Although a number of advancements in road extraction from
airborne LiDAR point clouds have been made, there are still two
notable unsolved problems. One is how to obtain accurate road
point clouds. Many studies extract road point clouds by setting
an elevation difference threshold and an intensity threshold
(Clode et al., 2007; Choi et al., 2008). Compared to the elevation
difference threshold, the intensity threshold has a direct impact
on the extraction outcome. Clode et al. (2004) determined the
intensity threshold experimentally. In order to obtain a more accu-
rate intensity threshold, Clode et al. (2007) tried sample training.
Choi et al. (2008) first selected several accurate road seeds from
a point cloud referenced to an aerial image and then calculated
the mean and variance of these points’ intensities. The maximum
threshold was set to the mean plus the variance, while the mini-
mum threshold was set to the mean minus variance. Xu et al.
(2009) used a histogram to determine the intensity threshold.
Although all these methods could obtain the intensity threshold,
the results are not optimal and require too much human interven-
tion. Thus, developing an efficient way to calculate the intensity
threshold automatically is still challenging.

The other difficulty is how to avoid the influence of attached
areas (e.g., parking lots and bare grounds) on road extraction.
Due to the similarity of elevation and intensity between the road
and attached areas, it is difficult to detach them. Zhao et al.
(2011) tried to eliminate wrongly extracted road centerlines
formed by parking lots using voting based on road directions. This
method obtained high correctness and completeness for linear
roads, but its ability for curved road extraction is limited. Later,
Zhao and You (2012) proposed another novel method by first
designing several road templates with different directions and
widths. Next, template fitting was carried out to each point. Finally,
the fielded voting was performed to determine road width and
direction to avoid the interference of attached areas. Hu et al.
(2014) adopted the tensor voting algorithm to enhance road linear
saliency. By setting the saliency threshold, non-road areas were
eliminated. This method is theoretically sound but requires a large
amount of calculation.

In order to improve the accuracy and efficiency of road extrac-
tion from airborne LiDAR point clouds, this paper proposes a novel
road extraction method. This method is abbreviated as SRH, which
indicates the use of three key algorithms: skewness balancing,
rotating neighborhood, and hierarchical fusion and optimization.
SRH is a multi-level method which can be applied not only to
straight road extraction but also to curved road extraction. In this
paper, these three main algorithms are given in Section 2. Section 3
presents several tests using the Vaihingen dataset provided by the
ISPRS and another three datasets used in practice, and the study’s
conclusions follow in Section 4.
2. Method and algorithm

Fig. 1 depicts the flowchart of the proposed method, which
includes four steps, namely ground point filtering, road point
extraction, narrow road removal and road network extraction.
The novel contributions of this paper mainly concentrate on the
latter three steps. Essentially, the SRH is a multi-level method
which is processed in a bottom-up fashion. Montoya-Zegarra
et al. (2015) notes that heuristic bottom-up methods (e.g., Poullis
and You, 2010; Miao et al., 2013) would make errors propagate
throughout the stages of the model. However, in this paper, the
outcome of each hierarchy improves and errors do not accumulate.

The multi-resolution hierarchical classification algorithm
proposed by Chen et al. (2013) was first applied to ground point
filtering. This filtering algorithm has been proved to be more
accurate and robust in complicated environments.

In order to extract road points, three constraints, namely,
the intensity constraint, the point density constraint and the
connected area constraint mentioned by Xu et al. (2009), were
adopted to classify road points from a ground point cloud. As the
intensity constraint is the dominant factor affecting the road point
extraction result, this study primarily focuses on the intensity con-
straint. In fact, the skewness balancing algorithm used for filtering
was adopted as a new way to calculate the intensity threshold.
Although the skewness balancing has been widely used for
segmenting the ground points from object points (referred to as
filtering), such as the method proposed by Bartels and Wei
(2006) and the method proposed by Crosilla et al. (2013), skewness



Fig. 1. Flowchart of the proposed method.
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balancing is for the first time being adopted to reject non-road
points from ground points.

Another novel contribution is the rotating neighborhood algo-
rithm developed in this paper, which is used to remove narrow
roads, such as corridors or sidewalks. The rotating neighborhood
algorithm is very different from some existed publications using
a road template (Zhao et al., 2002; Kim et al., 2004; Lin et al.,
2011). In this study, five templates with different centers are fixed
around the selected road pixel, and the surrounding neighbors are
rotated every time. Hence, this algorithm is much easier to realize
with less computation than applying the road template at different
orientations every time. Meanwhile, five different templates with
four different orientations mean that every pixel will be calculated
for twenty possibilities to test whether it is road. Therefore, the
rotating neighborhood algorithm will be more robust to some
changing roads thereby making the extraction result more
accurate.

The final step was based on road network extraction. This paper
developed a hierarchical fusion and optimization algorithm.
Although the hierarchical approach has been widely used, such
as Kurtz et al. (2012) and Kurtz et al. (2014), the proposed
algorithm is totally different from the previous uses. These publica-
tions focus only on how to fuse more information together which
would make errors accumulate. In addition to the fusion aspect,
this study spends more effort on the optimization aspect. While
more road branches are fused together, making the fused results
more accurate is the focus of this research. In view of this, road
junction finding regulation and road centerline optimization rules
are developed to get rid of the influence of attached areas
(e.g., parking lots, grass lands, and bare grounds).

As mentioned previously, the following will introduce three
novel contributions of this paper, namely, determining optimal
intensity threshold by applying the skewness balancing algorithm,
removing narrow roads by adopting the rotating neighborhood
algorithm and extracting road networks using the hierarchical
fusion and optimization algorithm.

2.1. Determining optimal intensity threshold

Among the intensity, point density and connected area con-
straints, the intensity constraint is the dominant factor affecting
the road extraction result. This property is observed because the



Fig. 2. Flowchart of intensity threshold determination.
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material of the road is consistent and obviously different than that
of bare earth, leading to a distinct difference of return intensity
between the road and the surrounding ground. Considering this
difference, the road points can be classified from ground points
by setting an intensity threshold. However, conventional intensity
threshold setting methods always depend on experience, which
usually results in an approximated range. Hence, it is difficult to
set an optimal intensity threshold, making it impossible to obtain
‘‘pure” road points. To address this problem, this paper tries to
obtain an optimal intensity threshold automatically based on the
skewness balancing, which has been used only for filtering in some
existed publications.

The skewness balancing was originally formulated by Bartels
et al. (2006) to separate ground and non-ground points. This
algorithm is based on two assumptions: one is that the elevation
of ground points is normally distributed, meaning that skewness
(sk) is equal to zero (Duda et al., 2011); the other is that the
Fig. 3. PDF of intensity of point cloud: (a) PDF of intensity of raw ground points and corr
normal PDF.
distribution of the raw point cloud is positively skewed due to
the disturbance of object points, which means sk is greater than
zero. After removing these object points, the normally distributed
ground point cloud can be achieved (Bartels and Wei, 2006). This
paper adopts similar ideas and makes the following assumptions:

① ‘‘Pure” road points’ return intensity values are normally
distributed, i.e., sk ¼ 0.
② Non-road points’ return intensity values lead raw ground
points’ intensity values into positive skewness distribution,
i.e., sk > 0.

The specific algorithm is described as follows:
First of all, intensity threshold I is set to the maximum value of

the raw ground points’ intensity, and sk of the raw ground point is
calculated. If sk > 0, the intensity threshold is tuned as I � 1, and
the raw ground point is filtered by this new threshold. This process
iterates until the skewness of the point cloud is no longer greater
than zero. The final I is the optimal intensity threshold for classify-
ing road points from ground points. The flowchart of this algorithm
is depicted in Fig. 2.

As shown in Fig. 3(a), the skewness of the initial ground point
intensity for the dataset of Vaihingen is 0.6915, and its probability
density function (PDF) belongs to a positive distribution, satisfying
the requirement of the previous assumption that raw ground
points’ intensities have a positive skewness distribution. When
the skewness balancing algorithm was employed, the PDF of the
point cloud tended to be a normal PDF with skewness of
�0.0091 as shown in Fig. 3(b). Meanwhile, the optimal intensity
threshold was obtained as 71.
2.2. Removing narrow roads

The road point cloud was obtained by adopting the intensity,
point density and connected area constraints (Xu et al., 2009). To
apply some image processing techniques, the road point cloud was
first rastered as shown in Fig. 4. It was found that although most
roadswere extracted, the road network contained toomany narrow
roads, which are corridors leading to parking lots or sidewalks
between residential quarters. These roads are not the main roads
thataremeant tobeextracted. For this reason, the rotatingneighbor-
hood algorithm was proposed to remove these narrow roads.

The basic idea of the rotating neighborhood algorithm is to set
five minimum road templates. By calculating the ratio of road
pixels within the template to the road template itself, the selected
esponding normal PDF; and (b) PDF of intensity of filtered points and corresponding



Fig. 4. Initial road rastered image. The road point cloud was first projected onto the
XY plane and rastered into a binary image. Then a morphological closing operation
was carried out to fill some holes. Finally, four connected analysis was applied to
eliminate some non-road areas.
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road pixels with maximum ratio less than the threshold will be
marked as narrow road and removed. As shown in Fig. 5, the length
L and width W of the five road templates and the side length B of
the road square neighborhood should meet the criteria expressed
in Eq. (1):

L ¼ 2 �W � 1
B ¼ 2 � ceilð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þW2

p
Þ þ 1

�
ð1Þ

where ceilðxÞ is used to return the smallest integral value that is not
less than x. It is obvious to find that once the width W is set, the
road template can be determined. In this paper, W was set to 5 m,
and then L was calculated as 9 m. Hence, the minimum road tem-
plate was determined as 5 m � 9 m, and the side length B of the
road square neighborhood was calculated as 23 m.

The five road templates are fixed around the selected road pixel,
while the road square neighbors rotate at four different
Fig. 5. Five road templates of different centers with square neighbor at alpha
orientation. The black area represents road pixels, white area surrounded by a black
box represents its square neighbor, and five rectangular boxes with different colors
represent road templates of different centers.
orientations. Thus, twenty different ratios can be calculated for
each road pixel. The maximum ratio T (Eq. (2)) is selected to be
the largest one among them.

T ¼ max
Sialpha
L �W

 !
alpha ¼ 0�; 30�; 60�; 90�; i ¼ 1;2;3;4;5

ð2Þ
where Sialpha is the area of road pixels within the template whose
center is i, while the orientation of the square neighbor is alpha.

It must be noted that for each road pixel twenty possibilities
were calculated to test whether it is narrow road or not. If the max-
imum ratio T is less than the threshold, the road pixel is rejected as
narrow road. In this paper, the ratio threshold is set to 0.78, which
is a user-defined constant.

2.3. Hierarchical fusion and optimization

After removing narrow roads, the binary road image still
contains some attached areas, such as parking lots, low grass lands,
or bare grounds, which have similar intensities and elevations as
the road. These similar features make it difficult to remove these
attached areas from road areas. However, there is one distinct
difference between attached areas and road areas in that roads
are always elongated while the attached areas are generally irreg-
ular in shape. Based on this characteristic these attached areas can
be detached.

2.3.1. Hierarchical road extraction
The morphological opening operation can retain areas suitable

for structural element (SE) and remove areas smaller than SE. As
roads are always in a long ribbon distribution, they can be
extracted well using linear SE. Nonetheless, when the road is vary-
ing in direction, only those roads with the same direction in linear
SE’s direction can be extracted. In order to extract roads in all
directions, linear SE with multiple directions was set to do a mor-
phological opening operation with binary road image (Tao et al.,
2010). The multi-direction linear SE can be defined according to
Eqs. (3)–(5), with Fig. 6 vividly depicting its shape.

SEL;ai ¼
yi ¼ xi tanðaiÞ xi ¼0;�1; � � �� ðL�1ÞcosðaiÞ=2 if jaij645�

xi ¼ yi cotðaiÞ yi ¼0;�1; � � ��ðL�1ÞsinðaiÞ=2 if 45� < jaij690�

�
ð3Þ

f ¼
[9
i¼�9

IM � SEL;ai ð4Þ
Fig. 6. Multi-direction linear SE sketch map.
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ai ¼ 10� � i ð5Þ
where SEL;ai is the multi-direction SE, L is the length of SE, ai is direc-
tion angle, IM is the binary road image, and � represents morpho-
logical opening operation.

In addition to the direction of linear SE influencing the result of
road extraction, the length of the linear SE is also significant. Fig. 7
shows the difference between two road extraction results using
two linear SEs of different lengths.

Fig. 7(a) above shows that the longer linear SE performs better
on long linear road extraction. Moreover, the extraction result was
barely affected by attached areas, such as parking lots, grass lands
and bare grounds. Conversely, the extraction outcome had poor
road integrity and lacked road details. This outcome is observed
because short roads were filtered out by the long linear SE. Further,
the long linear SE had little ability to extract short curvy roads. In
contrast, the shorter linear SE was able to extract more roads and
to keep the integrity of the road. However, the road extraction
result was more affected by attached areas, such as the areas
marked by red circles in Fig. 7(b).

To make full use of the strengths of both the long and the short
linear SE, this paper adopts a hierarchical road extraction method.
In other words, several SEs of different lengths were used to yield
different road extraction outcomes of different levels.

2.3.2. Road centerlines fusion and optimization
Road centerlines can reflect the basic road location information

and connected topological relationship. This paper adopts an
optimized skeletonized algorithm to extract road centerlines from
road images generated in Section 2.3.1. The algorithm proposed by
Telea et al. (2004) can maintain road topological relationships well
and does not introduce redundant road branches. In order to make
the final road centerlines possess anti-interference and high integ-
rity, road centerlines of different levels need to be fused and
optimized. As shown in Fig. 8, roads extracted by the longest SE
are defined as level 1. With the decreasing length of an SE, the
hierarchy number increases. The hierarchical fusion and optimiza-
tion are performed in a bottom-up fashion, where the outcome of
each level is fused and optimized with that of the previous level.
Fig. 7. Road extraction results using two linear SEs of different lengths: (a) the length of
in (b) indicate attached areas. The two linear SEs are both used to do a morphological op
followed by a dilation operation. (For interpretation of the references to colour in this fi
This process iterates until the preset shortest linear SE is adopted.
In each iteration, four main steps need to be carried out as follows:

(1) Classify road points

In this paper, a road junction refers to the point crossed by two
or more road centerlines. In contrast, there are two other types of
road points, namely road endpoints and road connection points. As
the road junctions are crucial in realizing the short road branch
removal and attached area distinguishing, they need to be marked
first from the road centerline image.

As shown in Fig. 9, R0 represents the road point that needs to be
classified. Four connected analysis to R0’s 24 neighbors is
performed and the number of connected components is calculated
as n. The relationship between n and the type of road pixel (R0) is
defined as follows:

(i) If n is equal to 1, the R0 pixel represents a road endpoint;
(ii) If n is equal to 2, the R0 pixel represents a road connection

point;
(iii) If n is greater than 2, the R0 pixel represents a road junction.
(2) Remove short road branches

In order to extract the main road network, several short road
branches need to be removed first. To calculate the length of road
branches, each of them should be tracked. The tracking begins from
the road endpoint and ends at another road endpoint or at a road
junction. By setting a road length threshold some short road
branches are removed. Meanwhile the corresponding marks of
road junctions are also removed.

(3) Distinguish attached area
Parking lots, low grasslands and bare grounds are regarded as
attached areas. As mentioned at the beginning of Section 2.3, these
attached areas seriously affect the road extraction result; thus,
these areas should be detached from road areas. Due to the non-
ribbon-like shape of these attached areas, the skeletonized road
linear SE is 91 m; and (b) the length of linear SE is 51 m. The red-circle labeled areas
ening operation with the binary road image, which consists of an erosion operation
gure legend, the reader is referred to the web version of this article.)
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Fig. 8. Flowchart of hierarchical fusion and optimization algorithm.
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centerlines will cross each other to form many road junctions as
shown in Fig. 10(c). Consequently, attached areas can be distin-
guished according to the number of road junctions in the local area.

The attached area discrimination rule is defined as follows: the
three nearest road junctions from each hierarchy and its successive
hierarchy are found and the maximum chessboard distance among
them is calculated. If the maximum chessboard distance is less
than the threshold, the corresponding road area is marked as
attached area. The chessboard distance is defined in Eq. (6) as:

d½ði; jÞ; ðh; kÞ� ¼ maxðji� hj; jj� kjÞ ð6Þ

where ði; jÞ and ðh; kÞ are the pixel positions of two different road
junctions, respectively.

(4) Optimize road centerlines

Road centerline optimization includes two aspects, namely, the
attached area optimization and the non-attached area optimization.
The non-attached area refers to road area without influence of, for
example, parking lots, bare ground, and grass land. The optimization
process was conducted on the fused road centerlines image.

(i) Attached area optimization

In the attached area, the optimization principle is removing
road centerlines of the upper level (hierarchy using shorter linear
SE) and preserving road centerlines of the lower level (hierarchy
using longer linear SE). To this end, the road junctions in the
attached area and road branches connected to them in the upper
level are removed while maintaining corresponding road branches
of the lower level. Thus, it is implicitly assumed that road
centerlines of the lower level are more accurate than the ones of
the upper level in the attached area.

(ii) Non-attached area optimization

The road centerline of the same road at different levels in a non-
attached area is also likely to be slightly offset. Thus, on the fused
image some road centerlinesmaydiverge or be adjacent in the stack,
but generally, these offsets are only slight as shown in Fig. 11(b).
Hence, amorphological closing operation is first adopted to fill these
small holes caused by offsets, and the optimized skeletonized
algorithm is subsequently applied to the result once again. In this
way, the road centerlines of non-attached areas are optimized.

3. Experiment and analysis

The proposed method was applied to the Vaihingen dataset
provided by the International Society for Photogrammetry and
Remote Sensing. The Vaihingen dataset was captured with the
Leica ALS50 system, and its average point density is 4 points/m2

(Cramer, 2010). Roads in this city are varying in widths with cars
on the road, and there are also some high trees shielding the road.
Moreover, some attached areas, such as parking lots, grass lands,
and bare grounds are along the road. Therefore, this dataset has a
very good representation of features for testing road extraction
methods.

3.1. Binary road image

With the help of the skewness balancing algorithm, the road
intensity threshold for the Vaihingen dataset was calculated as
71. In this paper, the minimum road template was set as



Fig. 9. The relationship between the type of road pixel and the number of connected components. Road endpoint: (1), (2) and (3). Road connection point: (4), (5) and (6). Road
junction: (7), (8) and (9). Ri represents road pixel. R0 is the road pixel to be classified. Four connected analysis results of (1)–(9) are 1, 1, 1, 2, 2, 2, 3, 4 and 4, respectively.

Fig. 10. Process of road centerline extraction: (a) initial road binary image; (b) extracted roads using linear SE; and (c) extracted road centerlines using the optimized
skeletonized algorithm. The red circle labeled area in (c) is the attached area. Many road junctions can be found in this area. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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5 m � 9 m, which means that any road smaller than the road
template will be removed. The final binary road image for Vaihin-
gen is shown in Fig. 12.

3.2. Hierarchical fusion and optimization

The core content of this paper is the hierarchical road centerline
fusion and optimization. Before doing this action, road centerlines
of different hierarchy are extracted first. Here, four linear SEs of
different length, namely 91 m, 71 m, 51 m and 31 m were utilized
to extract roads. The four road centerline extraction outcomes of
different hierarchies are shown in Fig. 13.

From Fig. 13, it can be observed that the shorter linear SE
extracted more road centerlines. However, there is a greater likeli-
hood that attached areas could be misclassified as roads. To solve
this problem, road centerlines are fused and optimized in a
bottom-up fashion. The outcome of each iteration is shown in
Fig. 14.



Fig. 11. Process of road centerline optimization in non-attached area: (a) road binary image; (b) road centerlines of different level skeletonized from (a); and (c) optimized
road centerline. The red circle labeled in (b) indicates the hole caused by offset of road centerlines of different level. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 12. Road binary image after removing narrow roads.

30 Z. Hui et al. / ISPRS Journal of Photogrammetry and Remote Sensing 118 (2016) 22–36
During the fusion and optimization process as shown in Fig. 14,
more roads were fused together, while roads caused by attached
areas were filtered. This is because by calculating chessboard
distance between the road junctions, attached areas can be effec-
tively discriminated, thereby filtering spurious roads caused by
these areas. Another characteristic is that the extraction outcome
is very ‘‘clean” and has a good integrity. In other words, the result
does not contain many small fragmented roads. This is because
the present study applies the rotating neighborhood algorithm to
the initial road binary image to first remove roads smaller than
the minimum road template.
3.3. Time required and parameter study

Three main steps, namely intensity threshold calculation by
applying the skewness balancing algorithm, narrow roads removal
by adopting the rotating neighborhood algorithm and road center-
line extraction using the hierarchy fusion and optimization
algorithm, are involved in this novel road centerline extraction
method. Table 1 shows the time required for each step. Here, the
test was performed on Intel CoreTM i5 CPU with 2 GB of main mem-
ory. The intensity threshold calculation covered 3,445,546 ground
points taking 1.1 min. In the second step of narrow road removal,
twenty possibilities were calculated for every road pixel to test
whether it was narrow road or not. However, owning to the
efficient principle of the rotating neighborhood algorithm, this step
took only a few minutes. Similarly, although the last step needs to
fuse and optimize four hierarchies’ results, it does not take much
time.

Six parameters, as shown in Table 2, need to be preset for this
study. Although the extraction outcome may be different if any
one of these parameters is changed, this paper focuses only on
two parameters, namely Lmax and Lmin, which indicate the longest
linear SE and the shortest linear SE because these two parameters
are the dominant factors affecting the result. In this paper four
linear SEs of different lengths were set in arithmetic progression,
namely 91 m, 71 m, 51 m, and 31 m. In comparison, this study
tested the dataset using another three groups of linear SEs with
different Lmax and Lmin. Those results are shown in Fig. 15. By visual
inspection of Fig. 15, it can be observed that different combinations
of linear SEs lead to different extraction results. Further, longer
Lmax values obtain more straight roads, but extract less road



Fig. 13. Road centerline extraction outcomes of different hierarchy. The lengths of linear SE for (a)–(d) are 91 m, 71 m, 51 m and 31 m, respectively.
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details. In view of this, Lmax and Lmin should be tuned by trial and
error in order to obtain the best performance.

3.4. Result evaluation

Three indicators, namely correctness (Cr), completeness (Cp)
and quality (Q), are used to quantitatively assess the extraction
effect of road centerlines. These three indicators are mathemati-
cally defined in Eqs. (7)–(9) (Wiedemman et al., 1998):

Cr ¼ Tp

Tp þ Fp
� 100% ð7Þ

Cp ¼ Tp

Tp þ Fn
� 100% ð8Þ

Q ¼ Tp

Tp þ Fp þ Fn
� 100% ð9Þ
where Tp is the total length of correctly extracted roads, Fp is the
total length of wrongly extracted roads and Fn is the total length
of missed roads.

The evaluation references ‘‘true” road centerlines, which can be
manually digitized. The experiment results show that correctness,
completeness and quality are 91.4%, 80.4%, and 74.8%, respectively.
In addition, the extraction results of SRH are compared to that of
the MTH method proposed by Hu et al. (2014) and two other
algorithms, the Phase Code Disk approach (PCD) proposed by
Clode et al. (2007) and Template Matching (TM) proposed by Hu
and Tao (2005), as shown in Fig. 16. Because the same data (Vaihin-
gen dataset) was used for SRH, MTH, PCD and TM, their extraction
results can be compared directly.

It can be observed from Fig. 16 that the proposed method yields
the best result. This finding can be explained by the following two
aspects. First, as a prerequisite for extracting accurate road center-



Fig. 14. The outcome of fusion and optimization at each iteration: (a) the outcome of the first iteration (level 1 with level 2); (b) the outcome of the second iteration (outcome
of the first iteration with level 3); and (c) the outcome of the third iteration (outcome of the second iteration with level 4).

Table 1
The time required for each step.

Steps Intensity threshold
calculation (min)

Narrow road
removal (min)

Road centerline
extraction (min)

Time 1.1 5.4 10.1

Table 2
Parameters preset in this paper.

Parameters Narrow road
removal

Road centerline
extraction

Width
(m)

Area
ratio

Short road
branch (m)

Chessboard
distance (m)

Lmax

(m)
Lmin

(m)

Values 5 0.78 40 40 91 31
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lines, the skewness balancing algorithm was utilized to calculate
optimal intensity threshold, thereby obtaining a ‘‘pure” and accu-
rate road point cloud. Second, the hierarchical fusion and optimiza-
tion algorithm proposed in this paper extracts a more accurate road
network. Roads extracted by the longer SE are barely affected
by attached areas and could be more accurate, while roads
extracted by the shorter SE could contain more road details. Com-
bining these advantages yields results with high correctness and
completeness.

To further investigate the performance of the proposed method,
the present study applied the SHR to another three datasets used in
practice. As shown in Figs. 17(a), 18(a) and 19(a), these three
datasets are located in different areas with different geographical
features. The final road network extraction accuracies of these
three datasets are indicated in Table 3. As shown in Fig. 17(a),



Fig. 15. Road centerline extraction results with different groups of linear SE: (a) the lengths of four linear SEs are 121 m, 101 m, 81 m and 61 m; (b) the lengths of four linear
SEs are 111 m, 91 m, 71 m and 51 m; (c) the lengths of four linear SEs are 101 m, 81 m, 61 m and 41 m; and (d) the lengths of four linear SEs are 91 m, 71 m, 51 m and 31 m.
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roads in test site 1 are regularly distributed. However, some parts
of roads in this area are shielded by trees making these road areas
have no LiDAR data (red dotted rectangle labeled areas in Fig. 17
(b)). Because of this the final extracted road network possessed
some undetected roads (Fn), which led to a little lower complete-
ness of this test site. In test site 2, there are many narrow roads
between residential districts. Owing to the rotating neighborhood
algorithm proposed in this paper, these narrow roads had little
influence on the final road extraction result. The main problem is
that the final extracted road network contained many wrongly
extracted roads (Fp) making the correctness of this area to be less
than desired. This is because there are many road-like areas which
have similar elevation and reflection intensity to roads. Moreover,
certain of these areas are also in ribbon distribution, which would
hinder the proposed method in discriminating them from roads. As
indicated in Table 3, both correctness and completeness of test site
3 are very poor. From Fig. 19(a) it can be found that roads in test
site 3 are irregularly distributed and covered by many dense trees.
By applying the skewness balancing algorithm to the point cloud of
this area, the intensity threshold was calculated as 10. However,
road areas were not extracted well using this threshold. As shown
in Fig. 19(b), many non-road areas still exist among road areas.
That is why the final road network (Fig. 19(c)) contains many
wrongly extracted roads (Fp). On the other hand, due to lack of
LiDAR data in many parts of the roads, many roads in this area
were undetected. A higher Fn led to poor completeness.



Fig. 16. The accuracy comparison of road centerline extraction results of the four different methods. Three indicators (correctness, completeness, and quality) of the other
three algorithms (MTH, PCD and TM) are provided by Hu et al. (2014).

Fig. 17. (a) The shaded DSM of test site 1; (b) the binary image of road extraction result; (c) the final extracted road network. The shaded DSM in (a) was derived in Surfer 12.0
software using three-dimensional coordinates information. The areas labeled with red dotted rectangles represent the undetected road centerlines, while the areas labeled
with red dotted circles labeled area represent the wrongly extracted road centerlines. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 18. (a) The shaded DSM of test site 2; (b) the binary image of road extraction result; (c) the final extracted road network. The shaded DSM in (a) was derived in Surfer 12.0
software using three-dimensional coordinates information. The areas labeled with red dotted rectangles represent the undetected road centerlines, while the areas labeled
with red dotted circles labeled area represent the wrongly extracted road centerlines. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 19. (a) The shaded DSM of test site 3; (b) the binary image of road extraction result; (c) the final extracted road network. The shaded DSM in (a) was derived in Surfer 12.0
software using three-dimensional coordinates information. The areas labeled with red dotted rectangles represent the undetected road centerlines, while the areas labeled
with red dotted circles labeled area represent the wrongly extracted road centerlines. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 3
Road network extraction accuracy.

Test site 1 Test site 2 Test site 3

Correctness 0.923 0.824 0.431
Completeness 0.795 0.907 0.359
Quality 0.752 0.746 0.298
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4. Conclusions

Road extraction from airborne LiDAR point clouds has been a
research hotspot for several years. Many methods have been
proposed in this field. However, there are still three unresolved
difficulties for extracting road information from point clouds:
how to extract road point cloud data purely from raw point cloud
data; how to discriminate and remove narrow roads from city
main roads effectively; and how to make the road extraction result
free from the influence of attached areas. In this paper, a novel
method (SRH) was proposed to extract road network from airborne
LiDAR point cloud more effectively using three algorithms: Skew-
ness balancing, Rotating neighborhood and Hierarchical fusion
and optimization.

The skewness balancing algorithm can help obtain accurate
intensity threshold, which can make the obtained road point cloud
more ‘‘pure.” The rotating neighborhood algorithm is proposed to
help extract main roads of the city. The hierarchical fusion and opti-
mization algorithm has two strengths: making the result robust to
attached area and making the extraction of roads more possible.

SRH was tested against the Vaihingen dataset provided by the
ISPRS Test Project. The results show that this method yields better
performance than three other methods (MTH, TM and PCD).
Another three tests using the datasets used in practice also proved
the effectiveness of the proposed method. Although the proposed
method could yield a promising performance, this method is
susceptible to introducing wrong road branches when the road
point cloud contains some ‘‘holes” caused by cars, trees, etc. Some
small ‘‘holes” can be filled by the morphological closing operation;
however, if the holes are too large to be filled, wrong road center-
lines will be introduced. Therefore, further research is warranted to
solve this problem.
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