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Abstract
Stochastic models are essential for precise navigation and positioning of the global navigation satellite system
(GNSS). A stochastic model can influence the resolution of ambiguity, which is a key step in GNSS positioning.
Most of the existing multi-GNSS stochastic models are based on the GPS empirical model, while differences in
the precision of observations among different systems are not considered. In this paper, three refined stochastic
models, namely the variance components between systems (RSM1), the variances of different types of observations
(RSM2) and the variances of observations for each satellite (RSM3) are proposed based on the least-squares variance
component estimation (LS-VCE). Zero-baseline and short-baseline GNSS experimental data were used to verify the
proposed three refined stochastic models. The results show that, compared with the traditional elevation-dependent
model (EDM), though the proposed models do not significantly improve the ambiguity resolution success rate, the
positioning precision of the three proposed models has been improved. RSM3, which is more realistic for the data
itself, performs the best, and the precision at elevation mask angles 20°, 30°, 40°, 50° can be improved by 4·6%,
7·6%, 13·2%, 73·0% for L1-B1-E1 and 1·1%, 4·8%, 16·3%, 64·5% for L2-B2-E5a, respectively.

1. Introduction

By 2020, the construction of the global navigation satellite system (GNSS) gradually improved with
the development of satellite navigation towards multi-frequency and multi-system (Teunissen and Mon-
tenbruck, 2017). Compared with GPS-only solutions, multi-GNSS solutions have more satellites and
offer better spatial geometry of satellite constellation in each epoch. Such multi-systems will influence
the precision and stability of the solution. Since GPS, the BeiDou navigation satellite system (BDS) and
Galileo all use the code division multiple access principle, similar functional and stochastic models can
be used in data processing. BDS and Galileo have been gradually built as late-stage global positioning
systems (Li et al., 2015; Jin and Su, 2020). By the end of 2020, all the 30 satellites planned for BDS-
3 had been launched and provided global services, including three geostationary earth orbit satellites,
three inclined geosynchronous orbit satellites, and 24 medium-altitude Earth orbit (MEO) satellites
(CSNO, 2019). With the successful construction of BDS-3, BDS can provide satellite observation sig-
nals with more frequency bands (Miao et al., 2020). The Galileo system is somewhat different from
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BDS. Its satellite constellation consists of three MEO planes. In theory, eight satellites are operated
on each orbit plane. By the end of August 2019, the Galileo system had a total of 22 normal on-orbit
working satellites in orbit (Hadas et al., 2019), and by 2022 the system is planned to operate with more
than 30 satellites (Yalvac, 2021). In addition, all BDS and Galileo satellites can provide signals on
three or more frequency bands, which greatly increases the number of observations (Li et al., 2019).
Therefore, multi-system, multi-constellation and multi-frequency signal combinations have become key
application trends (Cai et al., 2015; Zhou et al., 2018; Li et al., 2019).

The stochastic model reflects the statistical properties of random observation error (Li, 2016).
A correct and appropriate stochastic model is essential to obtain the optimal estimator in linear models
(Koch and Schönfeld, 1989). The most widely used stochastic models are based on empirical stochastic
models, such as the equal-weight model, the elevation-dependent model (Eueler and Goad, 1991; Li
et al., 2016; Xi et al., 2018), and the signal-to-noise ratio (SNR) model (Brunner et al., 1999; Hartinger
and Brunner, 1999; Wieser and Brunner, 2000; Yan et al., 2015). In the 1970s, the method of variance
component estimation (VCE) in linear model was proposed (Kubik, 1970; Pukelsheim, 1976). Later,
some scholars proposed many variance component estimation methods, and these methods were derived
under different assumptions. Commonly used variance component estimation methods include Helmert
VCE (Helmert, 1907), least-squares variance component estimation (LS-VCE) (Pukelsheim, 1976;
Teunissen, 1988; Teunissen and Amiri-Simkooei, 2008), minimum norm quadratic unbiased estimation
(Rao, 1971) and best invariant quadratic unbiased estimation (Schaffrin, 1981). Some scholars use
this method to study the cross-correlation of GNSS observations (Teunissen, 1997, 1998; Bona, 2000;
Foucras et al., 2017) and study the time correlation between different epoch observations (Bona,
2000; Hu et al., 2018). These studies further refine the stochastic model and are used in satellite
positioning processing. However, the stochastic models proposed for single-GNSS solutions are directly
applied for multi-GNSS solutions under the assumption that the precision of satellites in different
system constellations and observations at different frequencies are equal. The differences in the random
characteristics of observations among different systems are not considered, which is unreasonable.
Therefore, it is necessary to refine the stochastic model for multi-GNSS navigation and positioning.

In this paper, three refined stochastic models based on LS-VCE method are proposed to solve the
problem of the observation precision uncertainties in multi-system positioning. In order to validate the
proposed models in relative positioning, the relative positioning precision and ambiguity resolution
success rate of zero-baseline and short-baseline were analysed compared with those of the traditional
elevation-dependent model (EDM). This paper is organised as follows. In Section 2, the geometry-
based multi-systems double-differenced (DD) observation model is given, including functional models
and elevation-dependent stochastic models. In Section 3, the LS-VCE principle is introduced, then
three refined stochastic model construction strategies based on LS-VCE are given. In Section 4, zero-
baseline and short-baseline data with 8·19 km are processed. The impacts on single-frequency, single-
epoch relative positioning precision and ambiguity resolution success rate by using different stochastic
modelling strategies, i.e., EDM, RSM1, RSM2 and RSM3, are compared and analysed. Finally, some
concluding remarks are made in Section 5.

2. Geometry-based observation model

2.1. GPS-BDS-Galileo functional model

In relative positioning of GNSS, the DD observation model can eliminate receiver clock errors and
satellite clock errors. When the baseline distance is short (<10 km), signal propagation errors such as
the ionosphere and troposphere delays are also significantly reduced (Tang et al., 2018). Now suppose
that two receivers are tracking satellites simultaneously; the base station and the rover station are denoted
as b and r, respectively. The GPS-BDS-Galileo phase and code DD observation equation of satellite 1
and 2 can then be written as:

𝜙12,∗
𝑏𝑟 = 𝜌12,∗

𝑏𝑟 + 𝜆𝑁12,∗
𝑏𝑟 + ∈12,∗

𝑏𝑟 (1)
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𝑝12,∗
𝑏𝑟 = 𝜌12,∗

𝑏𝑟 + 𝑒12,∗
𝑏𝑟 (2)

where the superscript * refers to different satellite navigation systems; 𝜙12
𝑏𝑟 and 𝑝12

𝑏𝑟 denote the DD phase
and code observations in unit of range, respectively; 𝜆 denotes the carrier-phase wavelength; 𝜌 denotes
the geometrical distance of satellite–receiver; ∈ and e denote the phase and code observation noise and
other errors, respectively; operator (∗)12

𝑏𝑟 = (∗)1
𝑏 − (∗)1

𝑟 − ((∗)2
𝑏 − (∗)2

𝑟 ). The clock error and atmospheric
delay in the formula are both weakened and ignored here.

Since the observations suffer from inter-system bias between different systems, the reference satellites
should be selected separately for each navigation system. Then, the single-frequency and single-epoch
GPS-BDS-Galileo DD geometry-based linearised model can be written as:

𝐸

���������

𝝓𝑔

𝒑𝑔

𝝓𝑒

𝒑𝑒

𝝓𝑐

𝒑𝑐

���������
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑯𝑔 𝚲𝑔

𝑯𝑔 0
𝑯𝑒 𝚲𝑒

𝑯𝑒 0
𝑯𝑐 𝚲𝑐

𝑯𝑐 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

𝒃
𝒂𝑔

𝒂𝑒

𝒂𝑐

⎤⎥⎥⎥⎥⎥⎥⎦
(3)

where E(·) is the expectation operator; the superscripts g, e and c refer to GPS, Galileo and BDS
system, respectively; 𝝓 and p are phase and code DD observation vector in Equation (1) and (2);
𝑯 = −𝒆𝑖𝑟 + 𝒆 𝑗

𝑟 and 𝒆𝑖𝑟 denotes the direction cosine vector between receiver and satellite; 𝚲 is diagonal
matrix with wavelength 𝜆 of corresponding carrier phase; 𝒃 =

[
𝑏𝑥 𝑏𝑦 𝑏𝑧

]𝑇 denotes the estimated
baseline coordinate vector; a denotes the DD integer ambiguities vector.

2.2. GPS-BDS-Galileo stochastic model

Among the traditional stochastic models of GNSS, the elevation-dependent stochastic model is widely
used in GNSS data process. Generally, the EDM is used to describe the standard deviation (STD) of
the undifferenced observations of the satellite, and the variance of DD observations can be obtained by
the law of error propagation. In this paper, the traditional stochastic model is established using common
trigonometric function:

𝜎2
𝑖 =

𝜎2
0

sin2(𝜃)
(4)

where 𝜎0 is the STD of the phase or code undifferenced observations, the phase and code observation
STD is set to 0·003 m and 0·3 m, respectively; 𝜎2

𝑖 is the variance corresponding to the undifferenced
observation of satellite i; 𝜃 is the elevation angle of the satellite.

Therefore, the variance of undifferenced observations for each satellite can be calculated using
Equation (4). The covariance matrix of the DD phase observation reads:

𝑸∗
𝜙 = 𝑫

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝜎2
1
. . .

2𝜎2
𝑖
. . .

2𝜎2
𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑫T (5)

where the superscript ∗ denotes the different satellite systems; n is the number of visible satellites; D is
the differencing matrix and 𝑫 = [ −𝒆𝑛−1 𝑰𝑛−1 ], where e is a (n–1, 1) column vector with elements that
are all 1, and I is (n–1, n–1) identity matrix.
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Corresponding to the observation model of Equation (3), the single-frequency GPS-BDS-Galileo
DD observation stochastic model can be expressed as:

𝑸 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑸𝑔
𝜙

𝑸𝑔
𝑝

𝑸𝑒
𝜙

𝑸𝑒
𝑝

𝑸𝑐
𝜙

𝑸𝑐
𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

where the covariance matrix 𝑸∗
𝜙 and 𝑸∗

𝑝 are calculated using Equation (5). The superscript g, e and c
refer to the GPS, Galileo and BDS systems; the subscript 𝜙 and p denote the phase and code observation,
respectively.

3. Formulation of stochastic model based on LS-VCE

LS-VCE is easy to implement because it only needs simple iteration to gain the result. This section
will introduce the estimation principle of LS-VCE, then three construction strategies of three refined
stochastic models based on LS-VCE are given.

3.1. LS-VCE

The linear Gauss–Markov model can be written as:

E(𝒍) = 𝑨𝑥, D( 𝒍) = 𝑸 = 𝑸0 +

𝑝∑
𝑖=1

𝜎𝑖𝑸𝑖 (7)

where 𝑸0 is the known part of the covariance matrix, and in most cases it is a null matrix; 𝜎𝑖 (𝑖 =
1, 2, . . . , 𝑝) is the unknown (co)variance components to be estimated and 𝑸𝑖 corresponds with the
known cofactor matrix. The standard least-squares solution of p variance components can solved by
Equation (8) (Teunissen and Amiri-Simkooei, 2008):

�̂� = 𝑵−1𝝎 (8)

where N is a (p, p) reversible square matrix and �̂� and 𝝎 are (p, 1) vector. The elements in matrix N
and 𝝎 can be calculated as follows (Teunissen and Amiri-Simkooei, 2008):

𝑛𝑖 𝑗 =
1
2

tr(𝑸𝑖𝑸
−1𝑷⊥

𝐴𝑸 𝑗𝑸
−1𝑷⊥

𝐴) (9)

𝜔𝑖 =
1
2
�̂�T𝑸−1𝑸𝑖𝑸

−1 �̂� −
1
2

tr(𝑸0𝑸
−1𝑷⊥

𝐴𝑸𝑖𝑸
−1𝑷⊥

𝐴) (10)

where �̂� is least-squares residuals, obtained as �̂� = 𝑷⊥
𝐴𝒍, with 𝑷⊥

𝐴 = 𝑰 − 𝑨(𝑨T𝑸−1𝑨)−1𝑨T𝑸−1 denoting
the (m, m) orthogonal projector and m denotes number of observations; tr(·) is the trace of a matrix.

Because the residuals of the phase and code DD observations of each system approximately obey zero
mean normal distribution, as shown in Figure 1, the unknown variance components can be estimated
using LS-VCE. Firstly, the residuals of the DD observations of GPS-BDS-Galileo can be calculated with
Equation (3) and the initial value in Equation (7) can be obtained at the same time. Then the variance
components can be estimated using Equation (8). The iteration continues until the convergence value
of the variance components is obtained, which means that the difference between the results of two
consecutive iterations is less than the tolerance:

| |�̂�𝑖 − 𝜎𝑖−1 | | < 𝛿 (11)

where | | · | | is the vector norm and 𝛿 is set to 10−6 in this paper.
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Figure 1. Residuals of DD phase (bottom) and code (top) observations on L1 (left), E1 (middle) and
B1 (right).

3.2. Stochastic model refinement

If the assumptions of unknown parameters in the stochastic model are different, the estimated variance
components are also different. Three different assumptions are given below (Amiri-Simkooei et al.,
2009):

(1) There are differences in precision between the different systems;
(2) The precision of the phase and code observations in different frequencies is different;
(3) The precision of observations of each satellite is different.

Different refined stochastic models can then be established to solve the problem of the observation
precision uncertainties in multi-system positioning.

3.2.1. Refined stochastic model 1
According to the assumption (1), the single-frequency, single-epoch stochastic model in Equation (6)
can be rewritten as:

�̂� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎𝑔𝑸𝑔
𝜙

𝜎𝑔𝑸𝑔
𝑝

𝜎𝑒𝑸𝑒
𝜙

𝜎𝑒𝑸𝑒
𝑝

𝜎𝑐𝑸𝑐
𝜙

𝜎𝑐𝑸𝑐
𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)
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where 𝜎 is variance components between each system, and the subscript indicates the identity of
different systems. The unknown variance components vector to be estimated can be expressed as:

𝝈 =
[
𝜎𝑔 𝜎𝑒 𝜎𝑐

]T (13)

In order to be consistent with Equation (7), we remark the variance component elements in Equation
(13) as 𝜎𝑖 (𝑖 = 1, 2, 3), where 1, 2 and 3 indicate g, e and c, respectively. The single-frequency stochastic
model can then be written as:

𝑸 = 𝜎1𝑸1 + 𝜎2𝑸2 + 𝜎3𝑸3 (14)

where

𝑸1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑸𝑔
𝜙

𝑸𝑔
𝑝

0
0

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑸2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
𝑸𝑒

𝑝

𝑸𝑒
𝑝

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and 𝑸3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

0
0
𝑸𝑐

𝑝

𝑸𝑐
𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

Then the variance components of different systems can be estimated to construct a refined stochastic
model, which is called ‘refined stochastic model 1’ (RSM1).

3.2.2. Refined stochastic model 2
According to assumption (2), different types of observations have different precision. In the case of
single frequency, the variance components vector can be expressed as:

𝝈 =
[
𝜎𝑔
𝜙 𝜎𝑔

𝑝 𝜎𝑒
𝜙 𝜎𝑒

𝑝 𝜎𝑐
𝜙 𝜎𝑐

𝑝

]T (16)

Similar to RSM1, the elements in the vector are remarked as 𝜎𝑖 (𝑖 = 1, 2, . . . , 6) and the corresponding
cofactor matrix Q𝑖 can be expressed as:

𝑸𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
𝑸 ′

𝑖

0
0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17)

where

𝑸 ′
𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4 2 · · · 2
2 4 · · · 2
...
...
. . .

...
2 2 · · · 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
is the cofactor matrix of DD observations calculated by the law of error propagation, as in Equation (5).

The variance components estimated in each epoch can be applied in Equation (4) to obtain a refined
stochastic model, which is called ‘refined stochastic model 2’ (RSM2).

3.2.3. Refined stochastic model 3
According to assumption (3), the observations of each satellite have different precisions. If n satellites
are tracked synchronously, taking phase observations as an example, the covariance matrix of the DD
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Table 1. Detailed information on the baseline data sets used in the experiment.

Mark Station Length Receiver brand Antennas type Epochs

#1 CUT0-CUT2 0 Trimble NETR9 TRM 59,800.00SCIS 2852
#2 GS01-GS02 8·19 km SINOGNSS K707 CNTAT330 2880

observation can be expressed in the form of n variance components:

�̂� = 𝜎1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 2 · · · 2
2 2 · · · 2
...
...
. . .

...
2 2 · · · 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (𝑛−1)×(𝑛−1)

+ 𝜎2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 0 · · · 0
0 0 · · · 0
...
...
. . .

...
0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (𝑛−1)×(𝑛−1)

+ · · · + 𝜎𝑛

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
0 0 · · · 0
...
...
. . .

...
0 0 · · · 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (𝑛−1)×(𝑛−1)

(18)

where satellite 1 is the reference satellite and its cofactor matrix is also calculated by the law of
error propagation.𝜎𝑖 (𝑖 = 1, 2, . . . , 𝑛) denotes the variances of the undifferenced phase observations of
corresponding satellites. It should be pointed out that, because the matrix N in Equation (8) is rank-
deficient, the variances of the n satellites cannot be obtained in each epoch. In this case, the observations
of multiple epochs are grouped for estimation.

When the variance components are estimated by using LS-VCE, the trigonometric function model
can be used to fit the estimated variances components (Parkinson, 1996):

𝜎 =
𝑎1

sin(𝜃) + 𝑎2
(19)

where 𝜎 is the STD of undifferenced observation for phase and code in units of millimetres and metres;
a1 and a2 are the unknown parameters that need to be fitted; 𝜃 is the satellite’s elevation angle. The
stochastic model obtained by fitting is called ‘refined stochastic model 3’ (RSM3), which is more
realistic for the data set itself.

4. Experiments results and analysis

In this section, the traditional EDM, RSM1, RSM2 and RSM3 are used on GPS-BDS-Galileo relative
positioning to analyse and evaluate the positioning precision and ambiguity resolution.

4.1. Experimental description

Two real GNSS data sets are used to verify the proposed stochastic model. The zero-baseline data is
open source data from the Curtin GNSS Research Centre and the short-baseline data was collected in
Shanghai. The zero-baseline data was collected by two Trimble NETR9 receivers and TRM 59,800·00
SCIS antennas on 30 June 2019. The time span of collection is 24 h with 30 s sampling interval. The
short-baseline data was collected by two SINOGNSS K707 receivers and CNTAT330 antennas on
17 January 2021. The time span of collection is 24 h with 30 s sampling interval. The length of the
short-baseline is 8·19 km and detailed information of the data sets is given in Table 1.

4.2. Results of the zero-baseline

Because there are many ambiguity parameters in the functional model of Equation (3), the DD integer
ambiguities should be fixed beforehand by LAMBDA method to obtain a simplified functional model.
The different variance component parameters in RSM1 and RSM2 are estimated using Equation (8),
respectively. After that, these variance components can be used to construct the RSM1 and RSM2
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Figure 2. EDM fitted for phase (top) and code (bottom) observations on zero-baseline data (L1-B1-E1).

synchronously. In addition, the variance components of phase and code observations of each satellite
are estimated to fit the parameters of RSM3.

The zero-baseline data (#1) was processed in single-frequency to obtain the STD of the phase and
code observations of each satellites in the experiment. Satellites with elevation angles of <10° were
excluded in data processing. These STDs were then used to fit the parameters of RSM3 in Equation
(19). Two frequency bands of the GPS, BDS and Galileo observations variances were estimated and
fitted, respectively, being GPS (L1/L2), Galileo (E1/E5a) and BDS (B1/B2), as shown in Figure 2. The
fitted parameters are shown in Table 2.

In order to analyse the impact of the different stochastic models on relative positioning of the GPS-
BDS-Galileo combined system, different satellite elevation mask angles were set in the experiment for
single-frequency, single-epoch relative positioning. Figure 3 shows the series of the visible satellites
number under different elevation mask angles of GPS-BDS-Galileo combined system.

Figure 3 indicates that the average number of visible satellites at one epoch is >20 when the elevation
mask angle is set to 20°, but when the elevation mask angle is set to 50°, the visible satellites in some
epochs only reach about five. However, there are more visible satellites in the L1-B1-E1 frequency
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Table 2. Fitted parameters of RSM3 on zero-baseline data.

Phase Code

Baseline System a1 a2 a1 a2

CUT0-CUT2 GPS L1 1·184 0·123 0·101 0·187
L2 1·480 0·104 0·204 0·673

Galileo E1 1·167 0·080 0·123 0·265
E5a 1·448 0·090 0·126 0·393

BDS B1 1·384 0·154 0·120 0·347
B2 1·481 0·274 0·129 0·346

Figure 3. Numbers of visible satellites of L1-B1-E1 (left) and L2-B2-E5a (right) at different elevation
mask angles.

than in the L2-B2-E5a frequency at the same elevation mask angle because some BDS-3 satellites only
provide observations in the B1 frequency. In order to ensure the stability of the variance component
estimation, the maximum elevation mask angle in this paper is set to 50°.

The EDM, RSM1, RSM2 and RSM3 are applied to the single-frequency, single-epoch GPS-BDS-
Galileo relative positioning using zero-baseline data, and the elevation mask angles are set to 20°,
30°, 40° and 50°, respectively. Since the true value of the zero-baseline is known, the RMSE can be
calculated, and the RMSE of East (E), North (N) and Up (U) component is given in Table 3.

Table 3 shows that RSM1, RSM2 and RSM3 have better performance in single-frequency, single-
epoch relative positioning precision than that of EDM in most cases. However, the precision in N and
U components obtained from RSM1 can be even worse than that of EDM in elevation mask of 20°. The
models on the L1-B1-E1 frequency have a better performance in relative positioning than that of the L2-
B2-E5a frequency because there are more visible satellites in the L1-B1-E1 frequency under the same
elevation mask angle, as shown in Figure 3. It is worth noting that the relative positioning precision is
significantly reduced when the elevation mask angle is set to 50° because of the small number of visible
satellites in the combined system. RSM3 has the best performance in zero-baseline solutions. Figure 4
depicts the precision improvements in percentage brought by RSM1, RSM2 and RSM3 when compared
with EDM.

Figure 4 indicates that, compared with the EDM, the precision of RSM3 has been improved obviously,
especially when the elevation mask angle is set to 50°. As for RSM1, the precision on L1-B1-E1 is nearly
the same as that of EDM, and sometimes deterioration occurs (within 2%) on N and U components when
the elevation mask is set to 20°. When the elevation mask angle ≥40°, there are significant improvements
in all three directions on L2-B2-E5a frequency. RSM2 performs better when the elevation mask angle
≤40°, however the precision on L1-B1-E1 frequency shows no improvement when there are fewer
satellites that can be tracked on a 50° elevation mask angle. RSM3 performs the best among the three
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Table 3. Calculated RMSE of zero-baseline components on L1-B1-E1 frequency and L2-B2-E5a
frequency.

L1-B1-E1 L2-B2-E5a

Model Ele. mask E (mm) N (mm) U (mm) E (mm) N (mm) U (mm)

EDM 20° 0·779 0·792 3·583 1·002 1·096 6·261
30° 0·948 0·938 4·079 1·189 1·291 6·429
40° 1·353 1·232 6·474 1·843 1·943 9·133
50° 242·587 158·102 1665·304 163·269 95·063 1391·584

RSM1 20° 0·766 0·801 3·599 0·987 1·043 6·339
30° 0·933 0·912 4·034 1·153 1·195 6·429
40° 1·318 1·178 6·135 1·581 1·508 8·252
50° 241·644 157·488 1658·843 145·669 88·885 916·218

RSM2 20° 0·704 0·700 3·418 0·884 0·916 6·011
30° 0·822 0·794 3·780 1·006 1·051 6·006
40° 1·131 1·035 5·628 1·383 1·364 7·653
50° 241·553 157·429 1658·228 141·184 87·331 910·160

RSM3 20° 0·689 0·686 3·442 0·982 0·946 6·211
30° 0·816 0·786 3·799 1·079 1·080 6·157
40° 1·113 1·035 5·639 1·420 1·381 7·713
50° 68·654 44·036 448·472 110·320 55·511 482·692

Figure 4. Relative positioning precision improvement in percentage, comparing RSM1 (left), RSM2
(middle) and RSM3 (right) with EDM, for L1-B1-E1 (top) and L2-B2-E5a (bottom).
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Figure 5. SR of four stochastic models on L1-B1-E1 (top) and L2-B2-E5a (button) for different elevation
mask angles.

refined stochastic models, and the precision can be improved 4·6%, 7·6%, 13·2%, 73·0% for L1-B1-E1,
and 1·1%, 4·8%, 16·3%, 64·5% for L2-B2-E5a at 20°, 30°, 40°, 50° elevation mask angles, respectively.

As is known, the resolution of the DD integer ambiguity is a key step in high-precision relative
positioning (Amiri-Simkooei et al., 2016). The ambiguity resolution success rate (SR) is an important
indicator to evaluate the quality of the baseline solution. Figure 5 gives the single-frequency, single-
epoch ambiguity resolution SR for different stochastic models in the cases of different elevation mask
angles.

Figure 5 shows that the four stochastic models have almost the same performance in ambiguity
resolution SR of the zero-baseline. The impact of the decrease in the number of visible satellites caused
by the increase in the elevation mask angle on SR is more significant. The SR of the L1-B1-E1 frequency
is close to 100%, and the SR is still greater than 90% even when the elevation mask angle is set to 50°.
The SR in the L2-B2-E5a frequency gradually drops to about 70% due to the relatively small number
of satellites.

4.3. Results of the short-baseline

The short-baseline data (#2) collected by SINO K707 receivers was processed and analysed. Similarly,
the variances of each satellite observations are estimated beforehand to fit the parameters in RMS3. The
results and fitted paraments are shown in Figure 6 and Table 4, respectively.

The four stochastic models were also applied to the short-baseline data processing. The experiment
was also set up at the satellite elevation mask angles of 20°, 30°, 40° and 50°, respectively. Figure 7 shows
the series of the number of visible satellites under different elevation mask angles. It can be seen that,
similar to zero-baseline, the number of visible satellites in the L1-B1-E1 frequency is still significantly
greater than that in the L2-B2-E5a frequency because not all B2 signals of BDS can be tracked.
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Figure 6. EDM fitted for phase (top) and code (bottom) observations on short-baseline data (L1-B1-
E1).

Table 4. Fitted parameters of RSM3 on short-baseline data.

Phase Code

Baseline System a1 a2 a1 a2

GS01-GS02 GPS L1 0·853 0·042 0·109 0·094
L2 1·571 0·273 0·190 0·133

Galileo E1 0·929 0·056 0·243 0·217
E5a 1·024 0·146 0·189 0·136

BDS B1 1·198 0·124 0·134 0·158
B2 1·405 0·104 0·114 0·077
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Figure 7. Numbers of visible satellites of L1-B1-E1 (left) and L2-B2-E5a (right) at different elevation
mask angles.

Table 5. Calculated STD of short-baseline components on L1-B1-E1 frequency and L2-B2-E5a
frequency.

L1/E1/B1 L2/E5a/B2

Model Ele. Mask E (mm) N (mm) U (mm) E (mm) N (mm) U (mm)

EDM 20° 2·102 2·339 6·418 3·78 4·823 11·699
30° 2·318 2·431 7·641 4·227 5·321 14·447
40° 2·983 2·671 11·76 9·257 12·758 35·621
50° 4·916 3·296 19·328 6094·31 2372·97 19,491·83

RSM1 20° 2·159 2·241 6·172 3·689 4·696 11·162
30° 2·389 2·303 7·39 4·185 5·23 14·374
40° 3·149 2·541 11·748 5·745 5·808 22·949
50° 4·565 3·268 17·47 4479·153 1470·585 17,039·23

RSM2 20° 2·031 2·227 6·169 3·825 4·498 10·576
30° 2·298 2·276 6·882 4·01 4·93 12·447
40° 3·022 2·467 10·707 5·572 5·375 21·227
50° 4·423 3·132 17·17 4554·623 1494·749 17,328·54

RSM3 20° 2·152 2·288 6·352 3·853 4·714 11·716
30° 2·287 2·304 7·211 4·308 4·977 12·896
40° 2·887 2·475 10·587 6·031 5·397 22·287
50° 4·433 3·182 17·041 2124·035 705·661 8130·465

The STD of baseline components in E, N and U is calculated using four stochastic models, and the
results are given in Table 5. It can be seen in Table 5 that the L1-B1-E1 frequency had better performance
in relative positioning precision than the L2-B2-E5a frequency. Especially when the elevation mask
angle is 50°, the L1-B1-E1 frequency can still maintain a relatively stable positioning precision with
the help of the successful construction of the BDS-3.

The precision improvements in percentage brought by RSM1, RSM2 and RSM3 when compared
with EDM are shown in Figure 8. Figure 8 shows that the precision improvement of RSM1, RSM2 and
RSM3 on the L1-B1-E1 frequency is not obvious compared with the L2-B2-E5a frequency, and the
precision improvement on L1-B1-E1 frequency is below 10%. In contrast, the precision of the short-
baseline solution on L2-B2-E5a frequency is improved by at least 20% when fewer than 15 satellites can
be tracked on elevation mask angle ≥40°. Moreover, the precision of L2-B2-E5a frequency is improved
more significantly than on L1-B1-E1 frequency when the elevation mask angle ≥40°. RSM3 performs
best among the four stochastic models, and the precision at 20°, 30°, 40°, 50° elevation mask angles can
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Figure 8. Relative positioning precision improvement in percentage comparing RSM1 (left), RSM2
(middle) and RSM3 (right) with EDM, for L1-B1-E1 (top) and L2-B2-E5a (bottom).

be improved 0·9%, 5·2%, 9·4%, 11·5% for L1-B1-E1, and 0·2%, 9·3%, 39·1%, 58·9% for L2-B2-E5a,
respectively, which is consistent with the conclusion of the zero-baseline experiment.

Finally, the single-frequency, single-epoch ambiguity resolution SR for different stochastic models be
calculated with the whole piece of the data set (2,880 epochs), as shown in Figure 9. Figure 9 indicates
that EDM, RSM1, RSM2 and RSM3 have almost the same performance in ambiguity resolution SR.
Owing to the successful construction of BDS-3, the combined system on the L1-B1-E1 frequency still
has >10 satellites that can be tracked even when the elevation mask angle is set to 50°. The SR of
the L1-B1-E1 frequency did not decrease with the increase of the elevation mask angle. As show in
Figure 7, because not all B2 signals of BDS can be tracked, the minimum number of the observations
on L2-B2-E5a frequency can decrease to six. Thus, the ambiguity resolution SR on L2-B2-E5a is only
about 50%, and the SR of RSM3 is slightly worse than the other three stochastic models when the
elevation mask angle set to 50°.

5. Conclusions

A suitable stochastic model is important for multi-GNSS navigation and positioning. However, most
stochastic models proposed for single-GNSS solutions are directly applied for multi-GNSS solutions
under the assumption that the precision of satellites in different system constellations and observations
at different frequencies is equal. The differences in the random characteristics of observations among
different systems are not considered. In this paper, three refined stochastic models, namely, RSM1,
RSM2 and RSM3, based on the LS-VCE method are proposed to solve the problem of the observation
precision uncertainties in multi-system positioning. A set of zero-baseline data from Curtin GNSS
Research Centre and a data set of short-baseline with 8·19 km were used to analyse and verify the
proposed stochastic models. Results of both zero-baseline and short-baseline experiments show that the
proposed RSM1, RSM2 and RSM3 demonstrated better performance in relative positioning precision
compared with EDM in most cases. RSM3, which is more realistic for the data itself, performs the best.
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Figure 9. SR of four stochastic models on L1-B1-E1 (top) and L2-B2-E5a (button) for different elevation
mask angles.

The maximum improvements of relative positioning precision in elevation mask angles 20°, 30°, 40°, 50°
were about 4·6%, 7·6%, 13·2%, 73·0% for L1-B1-E1, and 1·1%, 4·8%, 16·3%, 64·5% for L2-B2-E5a,
respectively. For ambiguity resolution SR, the refined stochastic models are not significantly improved
when compared with EDM, and sometimes SR is slightly reduced. Therefore, a realistic stochastic
model can improve the precision of GNSS positioning, especially when fewer satellites can be tracked.
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