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Abstract: Chlorophyll-a (Chl-a), total nitrogen (TN), and total phosphorus (TP) are important indi-

cators to evaluate water environmental quality. Monitoring water quality and its variability can help 

control water pollution. However, traditional monitoring techniques of water quality are time-con-

suming and laborious, and can mostly conduct with sample point-to-point at the edge of lakes and 

rivers. In this study, an empirical (regression-based) model is proposed to retrieve Chl-a, TN, and 

TP concentrations in the Yangtze River by Landsat-8 images from 2014 to 2020. The spatial-temporal 

distribution and variability of water quality in the whole Yangtze River are analyzed in detail. Fur-

thermore, the driving forces of water quality variations are explored. The results show that the mean 

absolute percentage error (MAPE) of the water quality parameters are 25.88%, 4.3%, and 8.37% for 

Chl-a, TN, and TP concentrations, respectively, and the root mean square errors (RMSE) are 0.475 

μg/L, 0.110 mg/L, and 0.01 mg/L, respectively. The concentrations of Chl-a, TN, and TP in the up-

stream of the Yangtze River are lower than those in the midstream and downstream. These water 

quality parameters have a seasonal cycle with a maximum in summer and minimum in winter. The 

hydrological and meteorological factors such as water level, flow, temperature, and precipitation 

are positively correlated with Chl-a, TN, and TP concentrations. The larger the impervious surface 

and cropland area, the greater the cargo handling capacity (CHC), higher ratio of TP to TN will 

further pollute the water. The methods and results provide essential information to evaluate and 

control water pollution in the Yangtze River. 
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1. Introduction 

The Yangtze River is the mother river of China, which originates from the Qinghai-

Tibet Plateau. Its mainstream flows through 11 provincial administrative regions and 

spans the three major economic regions of eastern, central, and western China. The basin 

covers a total area of 1.8 million square kilometers and contains abundant resources. 

However, in the past two decades, due to the continuous increase in the total amount of 

sewage discharge in the river basin, some ecological conditions of rivers have gradually 

deteriorated, and the ecological balance of the Yangtze River has been destroyed [1]. The 

ecological environment of the Yangtze River basin and the residents around the Yangtze 

River have been severely affected [2]. According to the Bulletin of the Water Resources of 

the Yangtze River Basin and Southwestern Rivers in 2018, the main pollution items are 

ammonia nitrogen, TP, etc. Therefore, it is of great significance to monitor river water 

quality and explore the mechanism of eutrophication for the management, control, and 

treatment of water bodies. The conventional water quality monitoring approach generally 

collects water samples on the spot and carries them to the laboratory for analysis. Alt-

hough this approach has high accuracy, it is time-consuming and labor-intensive. It can 

Citation: He, Y.; Jin, S.; Shang, W. 

Water Quality Variability and  

Related Factors Along the Yangtze 

River Using Landsat-8. Remote Sens. 

2021, 13, 2241. https://doi.org/ 

10.3390/rs13122241 

Academic Editors: Zheng Duan,  

Junzhi Liu, Hongkai Gao, Shanhu 

Jiang, Jian Peng and Jianzhi Dong 

Received: 16 April 2021 

Accepted: 7 June 2021  

Published: 8 June 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 



Remote Sens. 2021, 13, 2241 2 of 20 
 

 

only sample point-to-point at the edge of lakes and rivers and cannot monitor the water 

quality of the entire water surface. Meanwhile, it is challenging to meet the requirements 

of long-term, large-scale monitoring of river and lake dynamics. Remote sensing monitor-

ing has the advantages of long duration, large scale, short monitoring period, and low 

cost, making up for the shortcomings of traditional monitoring methods [3]. In water pol-

lution monitoring, remote sensing technology can quickly monitor the ins and outs of pol-

lutants and provide reliable solutions rapidly. 

For the past 50 years, remote sensing has shown strong capabilities to monitor and 

evaluate the quality of water [4]. Current remote sensing is primarily used to retrieve wa-

ter quality parameters by empirical models. The common method is to extract the most 

relevant variables from the spectral band values and fit a standard linear regression model 

with the time-consistent in-situ water quality measurement values [5]. For instance, Li et 

al. used the reflectance of four bands of Landsat 8 OLI to construct an empirical retrieval 

model for TN and TP retrieval [6]. Lim estimated the concentrations of TN, phosphorus, 

and Chl-a in the Nakdong River using a multiple linear regression (MLR) model based on 

Landsat-8 [7]. Nazeer et al. divided water bodies into 5 categories by clustering and then 

established a local artificial neural network model for each type of water body to retrieve 

Chl-a and suspended soild (SS) [8]. Mohsen applied stepwise multi-linear regression tech-

nique to retrieve water quality parameters (Chl-a, TSS, PH, Fe, Zn, Cr, and ���) with 

reasonable accuracy [9]. 

Climate changes have a significant impact on the water environment. Many scholars 

analyzed the spatial and temporal variations of water quality parameters based on the 

retrieval results. Le et al. estimated Chl-a concentration in the Chesapeake Bay which had 

strong spatial gradients, seasonality, and climate-driven inter-annual changes [10]. Kahru 

et al. used empirical algorithms to create a 15-year time series of Chl-a concentration in 

the California Current region and analyzed the trend and distribution of Chl-a [11]. Mo-

radi used MODIS data to evaluate the spatial and temporal variations and trends of SST 

and Chl-a in the Persian Gulf and found that the Chl-a pattern was heterogeneous in both 

time and spatial scale [12]. Gao investigated the long-term trend of Chl-a in the Pearl River 

Plume and found decreasing trends for all percentiles of the Chl-a in the PRP, suggesting 

a decrease in productivity in the past two decades [13]. 

In this paper, the water quality parameters and related factors along the Yangtze 

River are investigated by Landsat-8. Firstly, a suitable model is established to retrieve Chl-

a, TN, and TP concentrations in the Yangtze River. Secondly, the spatial and temporal 

variations of water quality parameters are analyzed in the Yangtze River. Finally, the 

mechanism and driving forces of water quality variation in the Yangtze River are dis-

cussed, and suggestions on the control of water quality are put forward. 

2. Study Area and Data 

2.1. Study Area 

The study area is shown in Figure 1. Moreover, there have been many studies and 

analyses on the water environment and water quality of the Yangtze River. The water 

quality in the Yangtze River source area has been good in recent years, and most of the 

regional water quality indicators have reached Class 1 and 2 water standards. The inter-

annual difference in water quality is slight and fluctuates within the same range [14]. From 

1992 to 2016, the chemical oxygen demand (COD) and TP in the mainstream of the Three 

Gorges Dam were reduced by 40.9% ± 9.9% and 22.2% ± 9.7%, respectively. From 2003 to 

2016, TN and ammonia nitrogen increased by 1.3% ± 2.4% and 8.2% ± 2.6% [15]. Due to 

the rapid water exchange in the mainstream, the river has moderate nutrient concentra-

tions, and there has never been a bloom. The TN and TP concentrations in the tributaries 

have been rising since 2006 [16]. In recent years, the government has continuously 

strengthened the comprehensive monitoring and management of the water environment 

and water ecology in the Yangtze River and continued to apply water source protection 
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special rectification and waterbody management. Therefore, it is essential to monitor the 

long-term water quality of the whole Yangtze River’s mainstream and provide primary 

data for water quality management such as nitrogen and phosphorus control. 

 

Figure 1. The study area of the Yangtze River Basin. 

2.2. Data 

2.2.1. Remote Sensing Data 

The precomputed surface reflectance (SR) Landsat collections from January 2014 to 

December 2020 were used in this study (LANDSAT/LC08/C01/T1_SR). This dataset was 

the atmospherically corrected surface reflectance from the Landsat 8 OLI/TIRS sensors. 

These images contain 5 visible and near-infrared (VNIR) bands and 2 short-wave infrared 

(SWIR) bands, and two thermal infrared (TIR) bands of brightness temperature with a 

resolution of 30 m. 

2.2.2. Data Preprocessing 

In order to remove the influence of clouds, a pixel QA band was used to mask clouds 

in surface reflectance (SR) data. Before establishing a model between water quality pa-

rameters and surface reflectance, we obtained the surface reflectance at the location within 

5 days before or after based on the date of in-situ data collection. When retrieving the 

water quality of each month, we used the median value of the month on each pixel as the 

surface reflectance. 

2.2.3. In-Situ Observations 

From 10 September to 30 September 2020, we carried out in-situ measurements at 5 

locations, as shown in Figure 2, and 28 samples were taken at each location, including 

Nanjing (Jiangsu) on the 10th, Chizhou (Anhui) on the 12th, Jiujiang (Jiangxi) on the 14th, 

Yueyang (Hunan) on the 27th, and Yichang (Hubei) on the 30 September 2020. A total of 

140 points of Chl-a, TN, and TP concentrations in-situ observation data were collected. 

The Chl-a measuring instrument was EXO1 by American company YSI), and the effective 

measuring range was 0–400 μg/L. The TN and TP measuring instrument were CM-05 by 

the Beijing Shuanghui Jingcheng Electronic Products Ltd. The effective measuring range 

of TP was 0.02–2.5 mg/L, and the effective measuring range of TN was 0.5–25 mg/L. Every 
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sampling operation was in compliance with the water quality sampling technical regula-

tions issued by the Ministry of Water Resources of the People’s Republic of China. 

 

Figure 2. Location of the in-situ measurement sampling points. 

2.2.4. Meteorological Data 

The water flow, water level, temperature, and precipitation data in Yichang was from 

July 2016 to December 2020, and the frequency was once a day. The flow and water level 

data were officially released by Changjiang Water Resources Committee, and the temper-

ature and precipitation data were from the ERA5-Land reanalysis dataset 

(ECMWF/ERA5_LAND/HOURLY), which had been produced by replaying the land com-

ponent of the ECMWF ERA5 climate reanalysis. The reanalysis products combined model 

data with observations from across the world into a globally complete and consistent da-

taset using the laws of physics. Reanalysis produces data went several decades back in 

time and provided an accurate description of the climate of the past. 

2.2.5. Other Data 

Chongqing’s wastewater discharge, including chemical oxygen demand (COD), am-

monia nitrogen, TN, and TP from 2014 to 2018, were taken from the China Environmental 

Statistics Yearbook, which was compiled by the National Bureau of Statistics, the Ministry 

of Ecology and Environment, and other relevant ministries. The data of harbor handling 

capacity of Yichang and Chongqing port from 2018 to 2020 were from the Ministry of 

Transport of the People’s Republic of China. 

2.3. Methods 

2.3.1. Characteristics for Water Quality Retrieval 

Before constructing the empirical model, it was important to extract informative 

characteristics from the spectral bands. Therefore, based on the study of Niroumand-

Jadidi et al. [17], 4 characteristic types were proposed from the spectral bands. 

(A) Common standard characteristics 

In many water quality retrieval studies, band ratio (���) is the most common spectral-

derived characteristic. Kim et al. used band 2, band 5, and Band 2/Band 4 of Landsat-8 to 

retrieve Chl-a concentration [18]. Wu et al. used a combination of TM1, TM3/TM2, and 
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TM1/TM3 data to correlate Chl-a concentration and SD measurements with TP concentra-

tion [19]. Normalized difference indices (���) had also been widely used for estimating 

water quality parameters. M Vassiliki combined a variety of normalized indexes with 

band ratio to establish a multiple regression equation to retrieve Chl-a [20]. Spectral de-

rivative (���) was not common, but in some experiments, it performed well. Based on the 

in situ hyperspectral reflectance, Cheng et al. found that the first-order derivative model 

after spectral smoothing could be used for Chl-a estimation [21]. Equations (1, 2, 3) can be 

applied to any possible band combination: 

��� =
��

��

, � = {1, … , � − 1}, � = {� + 1, … , �} (1)

��� =
�� − ��

�� − ��

, � = {1, … , � − 1}, � = {� + 1} (2)

��� =
�� − ��

�� + ��

, � = {1, … , � − 1}, � = {� + 1, … , �} (3)

where ��  and ��  are spectral bands, ��  and ��  are the central wavelengths of ��  and 

��. 

(B) Characteristics based on color space transformation 

The characteristics were derived from a transformation of spectral characteristic 

space to hue-saturation-intensity (HSI)-inspired characteristic space. HSI space can de-

scribe the information contained in water bodies well, and, therefore, the retrieval of water 

quality parameters can be potentially enhanced [17]. In remote sensing applications, the 

HIS space transformation process can be used for shadow detection [22] and the retrieval 

of fluvial bathymetry [23]. Equations (4, 5, 6) can be applied to any possible band combi-

nation: 

��� = �
� �� �� ≤ ��

360 − � �� �� > �� 
, � = ����� �

0.5���� − ��� + (�� − ��)�

���� − ���
�

+ ��� − ������ − ����
�� (4)

��� = 1 −
3

�� + �� + ��

�min���, ��, ���� (5)

��� =
�� + �� + ��

3
 (6)

where � = {1, … , � − 2}, � = {� + 1, … , � − 1}, � = {� + 1, … , �}, where ��and �� are spec-

tral bands, �� and �� are the central wavelengths of �� and ��. 

(C) Characteristics based on coordinate system transformation 

The characteristics were derived from the coordinate system transformation of spec-

tral characteristic space. The coordinate system transformation in characteristic space had 

been applied to change detection analysis [24]. Here it was used in the field of remote 

sensing water quality retrieval and the characteristics azimuth (���), elevation (���), and 

radius (���) can be applied to any possible band combination: 

��� = ����� �
��

��

� (7)

��� = �����

⎝

⎛
��

���
� + ��

�

⎠

⎞ (8)
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��� = ���
� + ��

� + ��
� (9)

where � = {1, … , � − 2}, � = {� + 1, … , � − 1}, � = {� + 1, … , �} , where ��  and ��  are 

spectral bands, �� and �� are the central wavelengths of �� and ��. 

(D) Characteristics based on directional cosines 

The characteristics were based on directional cosines that characterize directional 

properties in spectral characteristic space and can be applied to the separation of topo-

graphic expression of land use classification [25] and calculation of spectral direction 

change [26]. This study applied it to remote sensing water quality retrieval. Equations (10, 

11, 12) can be applied to any possible band combination: 

���� =
��

���
� + ��

� + ��
�

 
(10)

���� =
��

���
� + ��

� + ��
�

 
(11)

���� =
��

���
� + ��

� + ��
�

 
(12)

where � = {1, … , � − 2}, � = {� + 1, … , � − 1}, � = {� + 1, … , �} , where ��  and ��  are 

spectral bands, �� and �� are the central wavelengths of �� and ��. 

2.3.2. Regression Modeling Validation 

According to previous studies, the linear function, quadratic function and exponen-

tial function were common fitting functions for the retrieval of water quality parameters 

[5]. After the comparison, the quadratic function performed the best. For a given charac-

teristic � , the water quality parameter C was estimated by the following regression 

model: 

� = ��� + �� + � (13)

where y is the interesting water quality parameter to be estimated, a, b, and c are the un-

known parameters to be estimated, and F is a given characteristic. 

The collected samples were divided into 2 groups, which were used to train and ver-

ify the regression model. The training samples were used to estimate the parameters (a, b, 

c) of the regression model, and then independent verification samples were used to eval-

uate the regression model. Estimations are �� = {���, ���, … , ���}, and known values are � =

{��, ��, … , ��}. RMSE and MAPE are used as the evaluation indicators of the model. 

2.3.3. Regression Modeling Validation 

Threshold segmentation was applied to extract the water body of the mainstream in 

the Yangtze River. In this study, the normalized difference water index (NDWI) was cal-

culated to enhance the water body and suppressed other feature information. Then, the 

Otsu algorithm was used to obtain an appropriate threshold and extract the water body 

information of the mainstream of the Yangtze River. The NDWI can be calculated as fol-

lows: 

���� =
������ − ����

������ + ����

 (14)

where ������ is the green band and ����  is the near-infrared band. 
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2.4. Fitting Function of the Water Quality Parameters Times Series 

The pattern of Chl-a concentration fluctuation was dominantly seasonal [27]. To fit 

the water quality parameters time series in the Yangtze River from January 2014 to De-

cember 2020, a fitting equation of the periodic variation of precipitable water vapors 

(PWV) was used as [28]: 

WQP =  ��  + �� · cos �
� − ��

12
· 2π�  +  �� · cos �

� − ��

12
· 4π�  +  � (15)

where �� is a constant term; ��, ��, �� and �� are the amplitude and phase at the period 

(1 year and 0.5 years); M is the month of the year and ε is the residual. The least-square 

method was used to determine the unknown parameters in Equation (15) with the water 

quality parameters time series. 

3. Results and Analysis 

3.1. Regression Analysis 

B1–B7 bands of Landsat-8 were chosen, and the approach in 2.3.1 was used to create 

characteristics. The band combinations of each characteristic were regression with the wa-

ter quality parameters. There were 55 Chl-a points and 86 TN/TP points, which were di-

vided into training sets and verification sets. And we obtained the coefficients of the re-

gression equation from the training set. Then the MAPE and RMSE were calculated from 

the validation set. RMSE and MAPE of all models were compared to filter out the best 

model with the highest accuracy. 

The regression analysis of water quality parameter concentrations is shown in Table 

1. Figure 3 shows the different characteristics in comparison to accuracy when retrieving 

water quality parameters. For the retrieval of Chl-a, the best characteristic was ����, re-

ferred to as Equation (11), the model MAPE was 26.89%, the RMSE was 0.529 μg/L, and 

�� was 0.95. For the retrieval of TN, the best characteristic was ���, referred to as Equa-

tion (2), the model MAPE was 4.52%, the RMSE was 0.092 mg/L, and �� was 0.80. For the 

retrieval of TP, the best characteristic was ��� , referred to as Equation (6), the model 

MAPE was 6.13%, the RMSE was 0.008 mg/L, and �� was 0.87. Furthermore, when com-

paring the retrieval performance of different characteristics, Chl-a and TN were relatively 

less sensitive to different characteristics, while TP was relatively higher, thus choosing a 

suitable characteristic can effectively improve the accuracy of the retrieval. In Figure 4, 

the residual analysis verified that these three models were acceptable and valid. For the 

retrieval of these three water quality parameters, TP had the highest accuracy, second TN, 

and finally Chl-a. 

3.2. Spatial-Temporal Variations of Water Quality Parameters 

3.2.1. Monthly and Annual Variations 

Since the Landsat-8 images have a high temporal and spatial resolution, we can ob-

tain monthly Landsat-8 images coverage of the Yangtze River. NDVI was used from Land-

sat-8, and the regression equations were used to retrieve water quality parameters along 

the Yangtze River mainstream. 

The water quality parameters in the Yangtze River were retrieved from January 2014 

to December 2020, and the variations of water quality parameters were analyzed during 

the year. Figure 5 shows the monthly variations of water quality parameters. The Chl-a, 

TN, and TP concentrations have similar variation characteristics every year. The Chl-a 

concentration rose in the first and second quarter of each year and declined in the third 

and fourth quarter. Generally, the Chl-a concentration reached the highest value in sum-

mer and reached the lowest value in winter. As for the concentrations of TN and TP, both 

have the same trend of change and reached the highest value in the first or third quarter. 

However, they had no obvious trend in other quarters. As shown in Figure 5d, the average 
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Chl-a, TN, and TP concentrations were relatively stable for the past 7 years, with only a 

slight decrease. 

 

Figure 3. Validation statistics (RMSE, MAPE, and R square) of different spectral characteristics with 

optimal band combinations in (a) Chl-a, (b) TN, and (c) TP concentrations. 

Table 1. Regression analysis of Chl-a, TN, and TP. 

Water Quality 

Parameters 
Characteristic Regression Equations MAPE RMSE �� 

Chl-a ���� =
��

���
� + ��

� + ��
�
          y = 2.17�� − 23.28� + 18.51 26.89% 0.529 μg/L 0.95 

TN ��� =
�� − ��

�� − ��

 y = −0.1�� − 0.66� + 1.45 4.52% 0.092 mg/L 0.80 

TP ��� =
�� + �� + ��

3
 

     y = 0.0577�� + 0.707�
+ 0.0735 

6.13% 0.008 mg/L 0.87 
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Figure 4. Comparison of retrieved concentrations and the measured concentrations of (a) Chl-a, (b) 

TN, and (c) TP, respectively. 

 

Figure 5. Water quality parameters variations of the Yangtze River from January 2014 to December 

2020. (a–c) are the monthly variations of Chl-a, TN, and TP concentration, respectively, and (d) is 

the annual trend. 
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In addition, we used the method in (2.3.4) to analyze the monthly and annual varia-

tions of the water quality parameters from 2014 to 2020, and the curve fitting results are 

shown in Figure 6. The annual and semi-annual variation amplitudes were −0.91 μg/L 

and 0.48 μg/L for Chl-a, −0.0039 mg/L and 0.0032 mg/L for TN, and −0.0024 mg/L and 

0.0022 mg/L for TP. It can be seen that the annual variations in the water quality of the 

Yangtze River were the most obvious, followed by half a year. The Chl-a and TN reached 

their maximum values in July and the minimum in January. TP reached its maximum 

value in June and the minimum in December. 

 

Figure 6. Fitting results of the monthly variations trend of the water quality parameters from 2014 

to 2020. (a–c) are the monthly variations of Chl-a, TN, and TP concentration, respectively. 

In terms of the spatial distribution of water quality parameters concentrations, the 

average value of upstream (Chongqing-Yichang), midstream (Yichang-Jiujiang), and 

downstream (Jiujiang-Shanghai) were counted separately in Figure 7. The Chl-a, TN, and 

TP concentrations in upstream were lower than those in midstream and downstream. Chl-

a, TN, and TP concentrations were similar in midstream and downstream, and there was 

little difference between them. 

 

Figure 7. Comparison of (a) Chl-a, (b) TN, and (c) TP concentrations in upstream, midstream, and 

downstream of the Yangtze River. 
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3.2.2. Seasonal Variations of Water Quality Parameters for the Yangtze River Sections 

Four important sections in the Yangtze River were selected for analyzing seasonal 

variations of water quality parameters, including Yichang, Hubei, Chenglingji, Hunan, 

Chizhou, Anhui, and Wuhan, Hubei. The Chl-a, TN, and TP concentrations of the sections 

in the past 7 years were calculated using the retrieval model and the results of curve fitting 

are shown in Figure 8. The result showed that the water quality variations had annual 

cycles, and the fitted coefficients were shown in Table 2. 

Table 2. Variation amplitudes and phases of Chl, TN and TP in Yichang, Chenglingji, Chizhou, and Hankou section. 

Section 
Water Quality 

Parameters 

Annual Variation Ampli-

tude (��/�) and Phase 

Half-Year Variation Am-

plitude (��/�) and Phase 

Constant 

Term 

 Maximum/Minimum 

Month in a Year 

Yichang 

Chl −7.5× 10��, 1.47 1.7× 10��, 1.49 3.61 July, January 

TN  −1.1 × 10��, 1.46 1.1 × 10��, 1.0 1.46 July, January 

TP  −8.6 × 10��, 1.29 3.0 × 10��, 1.0 0.10 July, January 

Chenglingji 

Chl  −1.01× 10��, 1.9 6.7× 10��, 1.9 3.71 August, February  

TN  −1.9 × 10��, 1.5 2.3 × 10��, 1.4 1.47 August, February 

TP  −1.2 × 10��, 1.38 5.1 × 10��, 1.1 0.11 July, January 

Chizhou 

Chl −7.3× 10��, 1.9 3.7× 10��, 2.2 4.5 August, February 

TN  −4.1 × 10��, −0.19 2.7 × 10��, 0.11 1.47 June, December 

TP  −5.6 × 10��, −0.18 5.9 × 10��, 0.47 0.11 June, December 

Hankou 

Chl  −1.6× 10��, 1.22 4.1× 10��, 1.8 4.9 August, February 

TN  −4.2 × 10��, −0.8 1.7 × 10��, 0.86 1.47 May, November 

TP  −6.3 × 10��, −0.67 1.8 × 10��, 0.39 0.11 May, November 

 

Figure 8. Fitting results of the monthly variations trend of the water quality parameters of the sec-

tions in the Yangtze River from 2014 to 2020. (A–D) are the sections of Yichang, Hubei, Chenglingji, 

Hunan, Chizhou, Anhui, and Wuhan, Hubei, respectively. 

  



Remote Sens. 2021, 13, 2241 12 of 20 
 

 

3.3. Relationship Between Water Quality and Other Factors 

3.3.1. Hydrological and Meteorological Factors 

The monthly variations of Chl-a, TN, and TP concentrations in Yichang with the wa-

ter level, flow, temperature, and precipitation are shown in Figure 9. The Chl-a, TN and 

TP concentrations reach their maximum in July, and their minimum in January. Water 

level and flow have the strongest correlation with Chl-a, TN and TP concentration, fol-

lowed by temperature and finally precipitation. The correlation coefficients between the 

two variables are shown in Table 3. 

Table 3. Correlation analysis Chl-a, TN, TP, water level, flow, temperature, and precipitation. 

 Chl TP TN Water level Flow Temperature Precipitation 

Chl 1.00 0.67 0.67 0.68 0.68 0.55 0.43 

TP 0.67 1.00 0.79 0.84 0.84 0.72 0.66 

TN 0.67 0.79 1.00 0.77 0.75 0.71 0.47 

Water level 0.68 0.84 0.77 1.00 0.95 0.79 0.67 

Flow 0.68 0.84 0.75 0.95 1.00 0.79 0.65 

Temperature 0.55 0.72 0.71 0.83 0.79 1.00 0.64 

Precipitation 0.43 0.66 0.47 0.67 0.65 0.64 1.00 

 

Figure 9. Comparison of Chl-a, TN, and TP concentrations and the variations of different factors. 

(A) is water level, (B) is flow, (C) is temperature, and (D) is precipitation. 
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3.3.2. Human Factors 

(A) Land use 

Land use along rivers has an impact on river water quality. Tong et al. [29] found that 

agricultural and impervious urban lands produced a much higher level of nitrogen and 

phosphorus than other land use. In this study, we have counted the riverbank land use 

with a buffer zone of 3 km in the Yichang section of the Yangtze River, and selected the 

river section where forests, impervious surfaces, and cropland account for the majority. 

The water quality of these three parts in the past 7 years is retrieved, combined with land 

use, and the result is shown in Figure 10. The result shows that Chl-a, TN, and TP concen-

trations are the highest along the banks where the main land use was cropland, followed 

by impervious surface, and finally forest. 

 

Figure 10. Comparison of (a) Chl-a, (b) TN, and (c) TP concentration under different land use along 

the coast. 

(B) Sewage Discharge 

The wastewater discharged from cities contains different pollutants, mainly includ-

ing chemical oxygen demand (COD), ammonia nitrogen, TN, TP, and other metal ele-

ments. This study counts the discharge of various wastewater pollutants in Chongqing 

and Shanghai from 2014 to 2018, and the concentrations of Chl-a, TN, and TP in Chong-

qing and Shanghai. The results are shown in Figure 11. In Chongqing, the overall variation 

trend of the four pollutants discharged from sewage from 2014 to 2018 was the same with 

a downward trend. The concentrations of Chl-a, TN, and TP were also consistent with 

their changing trends with a downward trend. In Shanghai, COD and ammonia nitrogen 

decreased year by year, while the discharge of TN and phosphorus first increased and 

then decreased. In addition, as shown in Figure 12, the proportion of nitrogen and phos-

phorus in the discharged wastewater was negatively correlated with the Chl-a concentra-

tion, and the negative correlation coefficient is −0.94. 

(C) Cargo handling capacity 

Ship pollution has the characteristics of mobility, wide area, long lines, and disper-

sion. It is an important source of pollution to rivers, including oily sewage, domestic sew-

age, ship garbage, ship noise, and ship exhaust [30]. In order to explore the relationship 
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between ship volume and water quality, this study counts the cargo throughput of Chong-

qing and Yichang Port from March 2018 to December 2020. As shown in Figure 13, cargo 

handling capacity was positively correlated with Chl-a, TN, and TP concentrations, and 

the Spearman correlation coefficients were 0.39, 0.49, and 0.22 in Yichang, respectively 

and 0.10, 0.49 and 0.22 in Chongqing, respectively. 

 

Figure 11. Variations in emissions of four pollutants and variations in (a) Chl-a, (b) TN, and (c) TP concentrations in 

Chongqing and Shanghai from 2014 to 2018. 

 

Figure 12. Variations in the ratio of TN and TP in discharged sewage and the Chl-a concentrations in Chongqing and 

Shanghai from 2014 to 2018. 
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Figure 13. Variations in the Cargo handling capacity and the Chl-a concentrations of rivers from 

2018 to 2020 in (A) Chongqing and (B) Yichang. 

4. Discussion 

4.1. Water Quality Retrieval 

Most studies used the visible and near-infrared bands of the solar spectrum (mostly 

from blue to near-infrared region) to retrieve water quality indicators [31,32]. Optically 

active substances such as Chl-a, total suspended solids (TSS), and turbidity can impact the 

optical properties of water and change the energy spectrum of solar radiation reflected by 

water [33]. Thus, they can be measured directly by remote sensing technology. Although 

the optical properties of the TN and TP are weak, they can also achieve a good correlation 

with the multispectral data. It was confirmed by our study and previous studies [34,35]. 

Palaciosd et al. thought that the sampling stations located in areas where these parameters 

were extremely high enough to color the water, or these water quality parameters were 

highly correlated with one or more of water quality parameters that could affect the spec-

tral properties of water, such as Chl-a, TSS, turbidity, etc. [36]. Therefore, it is feasible to 

directly use spectral information to retrieve TN and TP in water, and multispectral image 

data has been widely used to monitor and map the TN and TP spatial and temporal pat-

terns in different regions [7,37]. 

The goal of this study is to retrieve Chl-a, TN, and TP concentrations in the Yangtze 

River by satellite remote sensing images. We apply four characteristics based upon com-

mon standard characteristic (���, ���, ���), RGB to HSI transformation of the color space 

( ���, ���, ��� ), Cartesian to the spherical transformation of the coordinate system 

(���, ���, ���), and directional cosines (����, ����, ����) for empirical retrieval of river con-

stituents. Compared to the common standard characteristics, ���� has a significant im-

provement in Chl-a retrieval, and ��� still has the best performance in TN retrieval. Both 

��� and ��� have greater improvements in TP retrieval. This proves that complex char-

acteristics derived from spectral space may have a stronger correlation in water quality 

retrieval. The results reveal that empirical models have accurate retrieval results for Chl-

a, TN, and TP concentrations, which demonstrates that the Landsat-8 has adequate poten-

tial to retrieve Chl-a, TN, and TP concentrations in the river at a big scale. 
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4.2. Factors Related to Water Quality 

Previous studies have shown many factors that affect river water quality, including 

temperature, water level, flow, precipitation, pH, total dissolved solids, and so on [38,39]. 

Periodically hydrologic alterations strongly modify physicochemical properties and Chl-

a and their interactions in water bodies [40]. In addition, human activities such as sewage 

discharge, coastal land use, shipping, and other factors also cannot be ignored [41–43]. 

This study investigates the influence of the above factors on water quality in the Yangtze 

River and provides essential information for effectively controlling water pollution and 

managing water resources. 

4.2.1. Hydrological and Meteorological Factors 

As for water level, the water level has a robust influence on water quality [44,45]. 

High water levels can reduce Chl-a concentration directly by a dilution effect [46]. In ad-

dition, the high water level will reduce the light intensity that the algae at the bottom of 

the river can receive and affect the vertical distribution of the algae in the water body [47]. 

The flow rate of the river also affects the growth of algae. Studies have shown that differ-

ent algae have different ranges of optimal growth rates. After analyzing the result, it is 

speculated that at the Yichang section, when the flow rate increases, the Chl-a content 

increases, which means that the flow rate is in the range that can be suitable for algae 

growth. 

The temperature has a regulating effect on the metabolic process of algae cells to var-

ying degrees [48]. Furthermore, the temperature can affect the size of algae [49] and tem-

perature also affect the distribution and quantity of algae in the water body. The stratifi-

cation of water bodies will accelerate the growth of algae [50]. In Yichang, the optimal air 

temperature for algae reproduction should be about 20 °C. When the temperature rises, 

the life cycle of algae accelerates and multiplies in large numbers. 

Precipitation is an important factor in river flow. In the months when the precipita-

tion is greater, the river flow is also greater. Therefore, the influence of precipitation on 

total Chl-a, TN, and TP is similar to that of flow, and both have the regularity of seasonal 

variations. In addition, precipitation makes it easier to transfer pollutants to rivers, which 

directly increases the TN and TP concentrations in the river [51]. 

4.2.2. Human Factors 

Human activities at all spatial scales affect both water quality and quantity [52]. Alt-

hough some general correlations between land use and water quality can be observed, in 

general, the relationship is complex, with correlations in individual watersheds likely to 

be site or regionally specific [53]. When compared to the forest land, the impervious sur-

faces can pollute water quality, which is consistent with Yu’s conclusions [30,54]. In addi-

tion, the cropland can also increase the Chl-a, TN, and TP concentrations in the river, 

which may be that the farmland directly transports nitrogen and phosphorus elements 

into the river and causes the nourished water body. 

The influence of wastewater discharge on water quality cannot be underestimated 

[55]. We have counted the COD, ammonia nitrogen, TN, and TP concentrations in 

wastewater discharge and found that the trend of the four pollutant emissions is posi-

tively correlated with the content of Chl-a, TN, and TP, while the ratio of TN to TP is 

negatively correlated with it, with a negative correlation coefficient of −0.94. This means 

that adjusting the ratio of TN to TP in urban wastewater discharge can help control the 

degree of eutrophication of water bodies. 

The pollution of shipping to rivers mainly has the following aspects. First, exhaust 

gas from burning diesel [56,57]. According to data from the Ministry of Environmental 

Protection, 60% of inland river vessels are distributed in the middle and lower reaches of 

the Yangtze River Basin, and most of the vessels use marine fuel oil, which makes gas as 

an important source of pollution in cities along the river. Second, the domestic sewage 
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dumped by ships [58]. There are about 200,000 ships operating on the Yangtze River year-

round, producing 360 million tons of oily wastewater, domestic sewage, and 75,000 tons 

of domestic garbage each year, posing a serious threat to the water environment. Third, 

the heavy metal mud is stirred by the ship. Many reaches of the main and tributaries of 

the Yangtze River basin are polluted by heavy metals, including mercury, lead, and arse-

nic [59]. The pollution caused by the agitation of the ship’s propellers in the bottom mud 

with heavy metals will severely disrupt the water ecological balance. 

4.3. Wider Implications 

The theories and methods of this study are also useful in other rivers or lakes. Gao 

applied quantile regression analysis on 21-year (1998–2018) near-surface Chl-a data from 

satellite observations and investigated the long-term trend of Chl-a in the Pearl River 

Plume [13]. Duan et al. characterized the spatial-temporal distribution, long-term trend, 

and seasonal variations of water quality in the Yangtze River basin using statistical meth-

ods and time-series decomposition [41]. Minaudo et al. carried out the trend and seasonal 

analysis of Chl-a, nitrate, and phosphate in the eutrophic Loire River and found that the 

influence of phytoplankton on seasonal variations of nitrate was small [60]. Based on our 

analysis, the area of cropland and impervious surface along the Yangtze River were re-

duced, and the area of woods and grassland were increased. The ratio of TN to TP in 

urban wastewater discharge increased. In addition, the number of cargo ships on the river 

should be reasonably regulated, and the discharge of wastewater should be restricted. 

5. Conclusions 

This paper proposes empirical regression models to retrieve Chl-a, TN, and TP con-

centrations in the Yangtze River from Landsat-8 remote sensing imagery and in situ water 

samples. A total of 4 types of characteristics are used for constructing the empirical model, 

including common standard characteristics, characteristics based on color space transfor-

mation, characteristics based on coordinate system transformation, and characteristics 

based on directional cosines. The full search approach was used to select the best charac-

teristics to construct the empirical regression model and obtain reliable retrieval results. 

The spatial-temporal distribution, long-term trend, and seasonal variability of water qual-

ity in the Yangtze River were obtained and analyzed. The upstream has the best water 

quality, followed by the midstream, and finally the downstream. The Chl-a, TN, and TP 

concentrations reach the highest in about July and the lowest in about January. Further-

more, the influence of natural and human factors on water quality is further analyzed. 

The hydrological and meteorological factors such as water level, flow, temperature, and 

precipitation are positively correlated with Chl-a, TN, and TP concentrations in the Yang-

tze River. In addition, the larger the impervious surface and cropland area are, the greater 

CHC is. The higher ratio of TP to TN is, the more serious the water pollution is. Future 

studies will be dedicated to exploring the coupling relationship between water quality, 

environmental factors, and human factors, as well as short-term predictions of water qual-

ity. 
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