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Abstract
Traditional urban scene-classification approaches focus on 
images taken either by satellite or in aerial view. Although 
single-view images are able to achieve satisfactory results 
for scene classification in most situations, the complemen-
tary information provided by other image views is needed 
to further improve performance. Therefore, we present a 
complementary information-learning model (CILM) to perform 
multi-view scene classification of aerial and ground-level 
images. Specifically, the proposed CILM takes aerial and 
ground-level image pairs as input to learn view-specific fea-
tures for later fusion to integrate the complementary informa-
tion. To train CILM, a unified loss consisting of cross entropy 
and contrastive losses is exploited to force the network to 
be more robust. Once CILM is trained, the features of each 
view are extracted via the two proposed feature-extraction 
scenarios and then fused to train the support vector ma-
chine classifier for classification. The experimental results 
on two publicly available benchmark data sets demonstrate 
that CILM achieves remarkable performance, indicating that 
it is an effective model for learning complementary infor-
mation and thus improving urban scene classification.

Introduction
With the rapid development of remote sensing technology, 
traditional pixel-level image analysis has been unable to 
meet the needs of high-level image-content interpretation 
due to increasing spatial resolution, and urban scene clas-
sification has therefore been a hot topic in the remote sensing 
field (Zhou et al. 2018). Scene classification is assigning a 
specific label to each image according to its content (Kang et 
al. 2020), providing relatively high-level interpretation of a 
remote sensing image compared with pixel- and object-based 
classification (Xia et al. 2017). It is a practical application of 
high-resolution remote sensing image processing, which can 
provide data support for land planning and utilization (K. Xu 
et al. forthcoming), and is widely used in urban functional 
zoning planning (Huang et al. 2018), natural-disaster monitor-
ing (Attari et al. 2018), and object detection (Schilling et al. 
2018). Though the literature has developed a large number of 
scene-classification approaches—including handcrafted meth-
ods and ones based on deep learning—which can achieve 
remarkable performance, there are still problems to be solved.

On one hand, a high-resolution remote sensing image has 
rich spatial information and a complex background, making 
it difficult to extract powerful features for scene classification 
(T. Tian et al. 2021), and accordingly results in worse perfor-
mance. On the other hand, most of the existing scene-classifi-
cation approaches focus on images taken from a single view, 
such as satellite or aerial, but it has been demonstrated that 
the complementary information provided by other views is 
able to further improve classification performance (Machado 
et al. 2021), as shown in Figure 1. It is notable that scene 
classification of an aerial image can benefit from the comple-
mentary information provided by a ground-level image, and 
vice versa. For instance, we cannot obtain the correct classifi-
cation result of an airport unless both aerial and ground-view 
images are exploited. In recent work by Machado et al. (2021), 
early and late fusion based on a convolutional neural network 
(CNN) are exploited to perform multi-view scene classifica-
tion. More specifically, the early fusion is conducted by fusing 
the convolutional features of each view via a concatenation 
layer, whereas the late fusion is conducted by combining 
the prediction result of each view achieved by an individual 
CNN. Both early and late fusion have been proven effective 
for scene classification, but for early fusion, the concatena-
tion layer is inserted in the first several convolutional layers, 
which cannot integrate the high-level features of each view 
image. For late fusion, an individual CNN must be trained for 
the prediction of each view image, and the training process is 
time-consuming and totally separated. We therefore raise the 
question: Is it possible to learn complementary information 
via feature-level fusion and perform multi-view classification 
using a single CNN framework?

 Inspired by cross-view geo-localization (Vo and Hays 
2016; T. Tian et al. 2021), in this article we extend our previ-
ous work (Geng et al. 2021) and propose a complementary 
information-learning model (CILM) for multi-view urban scene 
classification of aerial and ground-level images. The proposed 
CILM is a two-branch network trained using a unified loss to 
enhance the performance. Once CILM is trained, the high-level 
features of each view image are extracted and then combined 
to train a support vector machine (SVM) classifier to perform 
the final prediction. It should be noted that our work is differ-
ent from that of Machado et al. (2021) in that, although both 
approaches take aerial and ground-level image pairs as input, 
for Machado et al. aerial and ground-level images in each pair 
are from the same location and the same class, whereas we 
ignore the location and the class of image pairs. Therefore, 
we explored how the information provided by pairs of images 
from different locations can benefit urban scene classification. 
Also, in our work, CILM is regarded as a feature extractor for 
extracting high-level features of each view image, which is 
not exploited for prediction. And we train an SVM classifier 
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using the fused high-level features to integrate complementa-
ry information for classification, which has been demonstrat-
ed to outperform the softmax classifier for scene classification 
(Xia et al. 2017).

In summary, the main contributions of this article are as 
follows.

•	We propose a complementary information-learning model 
trained with a unified loss to integrate complementary 
information for multi-view scene classification of aerial 
and ground-level images. The unified loss is composed 
of cross entropy and contrastive losses, where the cross-
entropy loss is to distinguish the class of each view image 
in the pair and to identify whether the input is a matched 
pair (i.e., aerial and ground-level images belonging to the 
same class) and the contrastive loss is to pull matched pairs 
closer and push unmatched pairs away in the feature space.

•	We explore two pretrained CNNs as the basic network to con-
struct CILM, which is then evaluated on two publicly avail-
able benchmark data sets with various experimental configu-
rations, thus providing baseline results for future research.

The remainder of this paper is organized as follows. The 
next section reviews related work on urban scene classifica-
tion. The proposed CILM is introduced in detail in the sec-
tion after that, and then the experimental setup and results 
presented. Finally, we give a brief conclusion.

Related Work
In this section, we briefly review the work on scene classifi-
cation and cross-modal methods for the processing of multi-
view images.

Scene Classification
Traditional remote sensing scene classification is based on 
handcrafted low- and middle-level features. The low-level 
features are either global features, such as the color histogram 
(Swain and Ballard 1991), texture features (Haralick et al. 
1973), and gist (Oliva and Torralba 2001), or local features, 
such as the famous scale-invariant feature transformation 
(Lowe 2004). In contrast, middle-level features establish the 
relationship with semantics through statistical-distribution 
analysis of low-level features; bag of visual words (Mansoori 
et al. 2013) is one of the representative methods, commonly 
used for classification tasks (Okumura et al. 2011). In recent 
years, methods based on deep learning have been widely 
exploited for scene classification, since CNNs outperform their 
counterpart traditional approaches on ImageNet (Krizhevsky 

et al. 2012), and have become the most popular approaches 
for image recognition since then. Zhou et al. (2017) proposed 
using a three-layer perceptron and a couple of convolutional 
layers to construct a low-dimensional CNN for remote sensing 
image retrieval. Han et al. (2017) integrated the pretrained 
AlexNet with spatial pyramid pooling and side supervision to 
improve scene-classification performance. Bian et al. (2017) 
proposed a simple yet effective saliency-patch sampling 
method to extract image regions that are the most informative.

Since effective and discriminative feature representation 
plays an important role in classification results (Zhang et al. 
2019), some works focus on how to extract powerful features. 
Liu et al. (2018) rearranged deep features and used discrimi-
native convolution filters with different kernel sizes for scene 
classification. Xu et al. (2020) used the transferred VGG16 
to extract the multi-layer convolutional features and added 
several layers to process hierarchical features in different 
branches, which can improve performance; whereas Liu et al. 
(2018) combined spatial pyramid pooling with deep CNNs and 
designed a multiple-kernel learning strategy to fuse multi-
scale features.

Though these handcrafted and particularly CNN feature-
based methods have achieved significant success for scene 
classification, their data sources are single-view satellite 
or aerial images; whether the complementary information 
provided by other view images can benefit scene classification 
has not been explored.

Cross-Modal Approaches for Multi-View Images
A cross-modal network, as its name implies, is trained using 
more than one kind of data, and is a commonly used approach 
to process images of different views simultaneously. In work 
by X. Xu et al. (2015), the earliest cross-modal network was 
presented for image and text retrieval, which supports search-
ing across multi-modal data and thus is suitable for remote 
sensing data (X. Xu et al. 2017). T. Tian et al. (2021) proposed 
an effective framework of cross-view matching for geo-
localization in urban environments. Khokhlova et al. (2020) 
introduced a multi-modal network across time that learns to 
retrieve by content vertical aerial images of French urban and 
rural territories taken about 15 years apart. Xiong et al. (2020) 
proposed a novel deep cross-modality hashing network for 
cross-modal content-based remote sensing image retrieval 
between synthetic aperture radar and optical sensors. Feng 
et al. (forthcoming) proposed a framework for multi-view 
spectral–spatial feature extraction and fusion for analysis and 
classification of hyperspectral images. Xu et al. (2020) used 

Figure 1. Visual examples of single- and multi-view scene classification.
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hand-drawn sketches describing mental pictures to retrieve 
the desired targets in large-scale remote sensing images.

Differentiating our work here, most of the existing cross-
modal works are essentially image matching to determine 
whether the input pairs are matched, such as the problem of 
image retrieval and geo-localization. The function of CILM, on 
the other hand, is to integrate the complementary information 
provided by each view image and then perform scene clas-
sification of multi-view images, which is a more difficult task 
than image matching.

Methodology
This section presents our methodology. We first introduce the 
architecture of the proposed CILM, then describe the unified 
loss used to train the network.

The Architecture of CILM
Our CILM consists of two identical subnetworks and three 
additional fully connected (FC) layers, as shown in Figure 2. 
The subnetwork is a CNN pretrained on ImageNet and contains 
convolution, pooling, and FC layers. CILM takes positive and 
negative image pairs as input, where a positive image pair is 
assigned the label 1 and a negative image pair is assigned the 
label 0. For positive image pairs, the aerial and ground-level 
images are from the same class, whereas for negative image 
pairs, they are from different classes.

During training, the aerial and ground-level images in a 
pair are each fed into one of the two subnetworks. The output 
feature vectors from each subnetwork are combined through a 
subtraction operation and the result is passed through the ad-
ditional FC layer FCag, with a single output. We use a sigmoid 
function to convert this output value to a probability between 
0 and 1, indicating the prediction of whether the input pairs 
are matched or unmatched. The first loss L1 is used for this 
task during training.

Relating to the other two additional FC layers, both FCa 
and FCg convert the 4096-D feature vectors from the subnet-
works to N-D feature vectors, where N is the number of scene 
categories. Therefore, FCa is used for aerial scene classifica-
tion, whereas FCg is used for ground-level scene classification. 
The motivation here is to force CILM to be more robust by 
using single-view image classification, which has been proven 
effective for scene classification (X. Liu et al. 2019). The 
second loss L2a and L2g are used for aerial and ground-level 
classification, respectively, during training.

The discriminative feature representation is significant for 
scene classification (Cheng et al. 2018); we therefore use the 
third loss L3 to learn powerful features. This is a ranking loss 

that can pull matched pairs closer and push unmatched pairs 
away in the feature space.

Once CILM is trained, we propose two scenarios to extract 
feature vectors to train the SVM classifier for classification, 
since SVM has been demonstrated to be more effective than 
the softmax classifier. More specifically, for the first scenario 
we extract features (i.e., fa and fg) from the last FC layers of 
the subnetworks, whereas for the second scenario we ex-
tract features (i.e., fa′ and fg′) from FCa and FCg. The extracted 
features are then fused to a feature vector through an addition 
operation.

Loss for CILM
The unified loss is exploited to update CILM during training. 
The unified loss LU is defined as

	 LU = λ1L1 + λ2L2 + λ3L3	 (1)

where λ1, λ2, and λ3 are three trade-off parameters that control 
the importance of these three losses.

L1 is a binary cross-entropy loss defined as

	 L1 = –qlog(p) – (1 – q)log(1 – p)	 (2)

	 p = sigmoid(fag)	 (3)

where q and p are the ground truth and the predicted label of 
the input pair, respectively, and fag is the output value of the 
FCag layer.

L2 is a softmax cross-entropy loss consisting of two parts, 
L2a for aerial-view classification and L2g for ground-level view 
classification:

	 L2 = L2a + L2g	 (4)

	
L q pi ii

N

2 1a
a a= − ( )=∑ log

	
(5)

	
L q pi ii

N

2 1g
g g= − ( )=∑ log

	
(6)

where N is the number of scene categories, qi
a and pi

a are the 
ground truth and predicted label of the aerial image, and qi

g 
and pi

g are the ground truth and predicted label of the ground-
level image.

L3 is a contrastive loss aiming to compare the similarity 
between aerial and ground-level images in the pairs:

Figure 2. The network architecture of the proposed complementary information-learning model (CILM).
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(7)

	 d = ||fa – fg||2	 (8)

where y is the label of the input pair, d is the Euclidean dis-
tance between fa and fg, and m is the margin parameter used 
for constraint. If aerial and ground-level images in a pair are 
similar (i.e., the two images are from the same class), then d 
should be smaller than m; otherwise it is larger.

Experiments
In this section, we first describe two publicly available bench-
mark multi-view data sets, and then we introduce the experi-
mental settings for our experiments. Finally, the experimental 
results and discussions are given.

Multi-View Data Sets
Our approach is evaluated using two benchmark data sets pre-
sented by Machado et al. (2021). The first, AiRound, is com-
posed of 11 classes: airport, bridge, church, forest, lake, river, 
skyscraper, stadium, statue, tower, and urban park (Figure 
3). Each class contains images in three distinct perspectives: 
satellite view, aerial view, and ground-level view. Therefore, 
each image in AiRound is composed of a triplet, with all three 
images acquired from the same place. Figure 4 shows some 
examples of image pairs; in our experiments, we use only the 
aerial and ground-level view images.

 The second data set, CV-BrCT, is composed of approxi-
mately 24 000 pairs of images split into nine urban classes: 
apartment, hospital, house, industrial, parking lot, religious, 
school, store, and vacant lot (Figure 5). Each class has images 
in two distinct perspectives: aerial view and ground-level 
view. The two view images in each pair are also acquired from 
the same place. Figure 6 shows some examples of image pairs.

Experimental Setting
As described before, we did not consider whether the aerial 
and ground-level images in each pair were from the same 
location or the same class. In our experiments, we construct 
image pairs by first randomly splitting the images in each 

Figure 3. The number of images of each class in the 
AiRound data set.

Figure 4. The number of images of each class in the CV-
BrCT data set.

Figure 5. Examples of image pairs taken from the AiRound data set.

Figure 6. Examples of image pairs taken from the CV-BrCT data set.
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class as 80% training samples and 20% test 
samples. Then we group aerial and ground-
level images in each class through the method 
of exhaustion to obtain image pairs.

Regarding CILM, we select AlexNet 
(Krizhevsky et al. 2012) and VGG16 (Simonyan 
and Zisserman 2015) as the subnetworks, 
which are famous shallow and deep CNNs, 
respectively, that have been widely used for 
image classification. We remove the last FC 
layers in each to for the subnetworks to output 
4096-D feature vectors. During training, the 
image pairs are resized to 227×227 pixels for 
AlexNet and 224×224 pixels for VGG16. The 
Adam optimizer is exploited to minimize the 
unified loss, where the gradient decay and the 
squared gradient decay factor are set to 0.9 and 
0.99, respectively. The training details of CILM, 
such as batch size, learning rate, and number 
of iterations, are shown in Table 1. For the uni-
fied loss, we set λ1= 1, λ2 = 0.5, λ3 = 0.0001, and 
m = 0.3.

In the following experiments, we conduct 
single- and multi-view classification to evalu-
ate the performance of CILM using the AiRound 
and CV-BrCT data sets. The single-view 
classification is aerial or ground-level clas-
sification using the subnetworks in CILM and 
the pretrained CNNs. Specifically, we evaluate 
the performance achieved by two CILM-based 
methods CILM_1_2 and CILM_U. The implemen-
tation details are shown in Table 2. Regarding 
the multi-view classification, we explore CILM 
with different configurations shown in Table 3.

In addition, CILM is compared to feature 
fusion and six-channel methods. Unless par-
ticularly stated, we extract features from the 
penultimate FC layer of the pretrained CNN and 
use SVM for classification.

Results on AiRound and CV-BrCT
Single-View Classification Results
The results of single-view classification ob-
tained by CILM are presented to explore how 
the complementary information provided by 
other view images can benefit scene classi-
fication. All the results obtained by CILM are 
presented in Table 4.

For both the AiRound and CV-BrCT data 
sets, we can see that CILM_U configured with 

VGG16 (not shared weights) as the subnetworks achieves the 
best performance for both aerial and ground-level images. 
In addition, CILM trained other than with shared weights 
achieves slightly better performance than with shared 
weights, and VGG16 is a better subnetwork than AlexNet.

Multi-View Classification Results

Table 1. The training parameters of CILM on two data sets.

Data Set
Basic 

Network
Batch 
Size

Learning 
Rate Iteration

AiRound
AlexNet 80 0.000 08 1000

VGG16 24 0.000 08 1500

CV-BrCT
AlexNet 80 0.000 08 3000

VGG16 24 0.000 08 5000

CILM = complementary information-learning model.

Table 2. The implementation details of single-view 
classification approaches.

Method Implementation Details

CILM_1_2 CILM + L1 and L2 losses + subnetwork + softmax classifier

CILM_U CILM + unified loss + subnetwork + softmax classifier

CILM = complementary information-learning model.

Table 4. Single-view classification results of CILM on two data sets.

Weights Subnetworks Method

Data Set

AiRound CV-BrCT

Aerial Ground-level Aerial Ground-level

Shared

AlexNet
CILM_1_2 82.15 80.52 78.04 61.81

CILM_U 82.83 81.82 78.39 62.39

VGG16
CILM_1_2 83.69 81.97 79.46 62.64

CILM_U 84.98 82.40 79.52 63.30

Not 
shared

AlexNet
CILM_1_2 84.55 82.40 78.09 63.16

CILM_U 84.78 82.83 79.66 63.50

VGG16
CILM_1_2 84.12 82.83 79.91 63.61

CILM_U 85.83 83.26 80.37 63.72

CILM = complementary information-learning model.

Table 5. Multi-view classification results of CILM on the AiRound data set.

Weights Subnetworks

Method

CILM_1 CILM_1_3 CILM_1_2 CILM_U

FS SS FS SS FS SS FS SS

Shared AlexNet 87.55 — 87.98 — 90.56 90.99 91.42 92.27

VGG16 88.41 — 88.84 — 91.20 91.55 91.85 92.70

Not 
shared

AlexNet 89.27 — 89.70 — 91.38 91.70 92.06 93.13

VGG16 89.70 — 90.10 — 90.92 91.83 92.49 93.56

CILM = complementary information-learning model; FS = first scenario;  
SS = second scenario.

Table 6. Multi-view classification results of CILM on the CV-BrCT data set.

Weights Subnetworks

Method

CILM_1 CILM_1_3 CILM_1_2 CILM_U

FS SS FS SS FS SS FS SS

Shared AlexNet 80.24 — 80.50 — 80.70 81.62 81.58 82.18

VGG16 81.80 — 81.90 — 83.62 84.06 83.97 84.24

Not 
shared

AlexNet 80.52 — 80.60 — 81.66 82.11 82.38 82.42

VGG16 82.35 — 82.45 — 83.66 84.09 84.15 84.32

CILM = complementary information-learning model; FS = first scenario;  
SS = second scenario.

Table 3. The implementation details of multi-view 
classification approaches.

Method Implementation Details

CILM_1 FS CILM+L1 loss + FS

CILM_1_3 FS CILM + L1 and L3 losses + FS

CILM_1_2
FS CILM + L1 and L2 losses + FS

SS CILM + L1 and L2 losses + SS

CILM_U
FS CILM + unified loss + FS

SS CILM + unified loss + SS
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Here we present the results of multi-view classification on the 
AiRound (Table 5) and CV-BrCT (Table 6) data sets obtained 
by the proposed CILM with different configurations. It can be 
observed that CILM_U configured with VGG16 (not shared 
weights) as the subnetworks and SS as the feature-extraction 
strategy achieves the best performance for both data sets. The 
results will be analyzed in detail.

It can be seen that CILMs not trained with shared weights 
achieve slightly better performance than those with shared 
weights, except for CILM_1_2 configured with VGG16 and 
the first scenario for the AiRound data set. The results make 
sense, since aerial and ground-level images are taken from 
different perspectives, and thus we can learn view-specific 
features when the subnetworks do not use shared weights. For 
the subnetworks, it seems that VGG16 is a better choice than 
AlexNet, but the performance difference is small. To explore 
how the proposed unified loss can improve the performance of 
CILM, we trained CILM using different losses. It is obvious that 
CILM_U outperforms the other approaches, indicating that the 
unified loss can benefit multi-view classification. We can also 
conclude that L2 is the most important among the three losses, 
according to the results obtained by CILM_1_2, CILM_1_3, 
and CILM_1. In addition, SS is a more appropriate feature-
extraction scenario for CILM. This is because the first scenario 
extracts 4096-D features from the last FC layers of the subnet-
works, whereas the second scenario extracts N-D features from 
the additional FC layers, where the features are class-specific 
high-level features, thus achieving better performance.

According to the results of multi- and single-view classifi-
cation, we can conclude that multi-view scene classification 
can benefit from the complementary information provided by 
aerial or ground-level images. For AiRound, the best perfor-
mance is 93.56, whereas the best single-view performance 
is 85.83 for the aerial view and 83.26 for the ground-level 
view. With respect to CV-BrCT, the best performance is 84.32, 
whereas the best single-view performance is 80.37 for the 
aerial view and 63.72 for the ground-level view. Therefore, 
multi-view classification improves the results of single-
view classification by a significant margin, especially for 
the ground-level classification of CV-BrCT. This is possibly 

because the ground-level images in CV-BrCT are more chal-
lenging than the aerial images, as shown in Figure 6.

Feature-Visualization Results
In addition to the single- and multi-view classification results, 
we also present the visualization results of features extracted 
by CILM to give a quantitative evaluation, as can be observed 
in Figures 7 and 8. For the AiRound data set, the features 
of multi-view images can be easily separated for different 
classes, whereas for single-view images, most of the image 
classes are clustered together—except for stadium. Regarding 
the CV-BrCT data set, we can observe similar results as with 
AiRound. But an interesting phenomenon is that the fea-
tures of multi-view images and aerial images achieve similar 
clustering performance, both outperforming ground-level im-
ages by a significant margin. These results make sense, since 

Table 7. Performance comparisons of CILM and counterpart 
approaches for single- and multi-view classification.

Method

Single-View Classification

AiRound CV-BrCT

Aerial Ground Aerial Ground

CNN-softmax (Simonyan  
and Zisserman 2015)

82.84 81.55 79.18 62.12

CNN-SVM (Simonyan  
and Zisserman 2015)

80.52 80.09 69.87 54.95

CILM 85.83 83.26 80.37 63.72

Method

Multi-View Classification

AiRound CV-BrCT

Feature fusion (Simonyan  
and Zisserman 2015)

90.4 74.99

Six-channel  
(Vo and Hays 2016)

70.39 73.46

CILM 93.56 84.32

CILM = complementary information-learning model;  
CNN = convolutional neural network.

Figure 7. Feature-visualization results of single- and multi-view images in the AiRound data set.

Figure 8. Feature-visualization results of single- and multi-view images in the CV-BrCT data set.
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CV-BrCT is more challenging than AiRound, and the ground-
level images in CV-BrCT have higher intraclass diversity. 

Table 7 shows the comparison results of single- and multi-
view classification achieved by CILM and other counterpart 
approaches on AiRound and CV-BrCT. For the multi-view 
classification, our method outperforms feature fusion and 
six-channel methods for both data sets. The six-channel 
method performs the worst among these approaches; is not 
as effective, as it was used for geo-localization (Vo and Hays 
2016). This is because for image geo-localization, we only 
need to determine whether the two images are from the same 
location, whereas for multi-view classification we need to 
identify the classes of image pairs, which is definitely a more 
challenging problem. As for the single-view classification, our 
approach achieves better performance than the two pretrained 
CNN-based approaches for both data sets.

The confusion matrices of the multi-view results achieved 
by our approach on AiRound and CV-BrCT are shown in 
Figures 9 and 10, respectively. For AiRound, the classifica-
tion accuracy of lake is below 0.8, and around 22% of lake 
samples are incorrectly classified to rivers due to the high 
similarity and the imbalanced number of samples between 
lake and river. Skyscraper also has a lower classification ac-
curacy, due to the small number of samples, and some images 

are mistakenly classified in other building categories, such as 
airport and stadium. In addition, urban park is easily con-
fused with forest. For CV-BrCT, the high similarity between 
different classes and the number of samples has a great influ-
ence on the classification accuracy. We can see that the clas-
sification accuracy of hospital is only 18%, because hospital 
is severely confused with apartment.

Conclusion
In this article, we proposed a complementary information-
learning model (CILM) for multi-view urban scene classifica-
tion. To enhance the training of CILM, we exploited a unified 
loss consisting of two cross-entropy losses and a contrastive 
loss. Unlike the existing works that use softmax for classifica-
tion, we extract the high-level features of aerial and ground-
level images via two feature-extraction scenarios, and then 
fuse the features to integrate complementary information to 
train an SVM for classification. We explored CILM with differ-
ent configurations of subnetworks, losses, and feature-extrac-
tion scenarios to evaluate its performance. The experimental 
results show that CILM configured with VGG16 (weights not 
shared) as the subnetworks and the second scenario as the 
feature-extraction strategy achieves the best performance on 
both AiRound and CV-BrCT data sets. Further, the compari-
son results between multi- and single-view classification in-
dicate that the complementary information provided by other 
view images can benefit scene classification.
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