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ABSTRACT
The Unmanned Aerial Vehicle (UAV) and Google Earth (GE) RGB images have ultra-high spa-
tial resolution. But it is difficult to get a high classification accuracy due to the poor spectral
resolution. In this article, the object-based wetland classification is investigated using multi-
feature combination of ultra-high spatial resolution multispectral images (MSI). A Gram-
Schmidt (GS) transformation is used to fuze Sentinel-2A data with UAV and GE RGB images,
respectively, in order to obtain the ultra-high spatial resolution MSI as data sources. Three
different feature combination classification scenarios are constructed for fusion GE and UAV
MSI, respectively, based on selected features. The object-based random forest (RF) algo-
rithms with parameters (mtry and ntree) optimization are used to carry out finer wetland
classification. Results show that the fusion GE and UAV MSI have good applicability in the
finer wetland classification, especially the fusion UAV images, and integrating multi-source
features could improve classification accuracy. Both data sources reach the highest accuracy
in scenario3. The overall accuracy of fusion UAV image scenario3 is 94.31% (Kappa ¼
0.9353), and that of fusion GE image scenario3 is 87.37% (Kappa ¼ 0.8528). The contribution
of different features to wetland classification is obtained with spectral and vegetation
indexes, texture, geometric and contextual features.

RÉSUMÉ

Les images RGB de drones (UAV) et de Google Earth (GE) ont une r�esolution spatiale ultra-
haute. Cependant, il est difficile d’obtenir une grande pr�ecision de classification en raison
de la faible r�esolution spectrale. Dans cet article, une classification des milieux humides ori-
ent�ee objet est �etudi�ee �a l’aide d’une combinaison multi-param�etres d’images multispec-
trales �a r�esolution spatiale ultra-haute (MSI). Une transformation Gram-Schmidt (GS) est
utilis�ee pour fusionner les donn�ees Sentinel-2A avec des images UAV et GE RGB, respective-
ment, afin d’obtenir un MSI �a r�esolution spatiale ultra-haute comme sources de donn�ees.
Trois sc�enarios diff�erents de classification des combinaisons de param�etres sont construits
pour la fusion GE et UAV MSI, respectivement, en fonction des param�etres s�electionn�es. Les
algorithmes de forêt al�eatoire (RF) orient�es-objets avec optimisation des param�etres (mtry et
ntree) sont utilis�es pour effectuer une classification plus fine des milieux humides. Les
r�esultats montrent que les fusions GE et UAV MSI ont une bonne applicabilit�e dans la classi-
fication plus fine des zones humides, en particulier la fusion des images de drones, et l’int�e-
gration de param�etres multi-sources pourraient am�eliorer la pr�ecision de la classification.
Les deux sources de donn�ees atteignent la plus grande pr�ecision pour le sc�enario 3. La
pr�ecision globale du sc�enario 3 pour la fusion d’une image de drone est de 94,31% (Kappa
¼ 0,9353), et celle du sc�enario 3 pour la fusion d’une image GE est de 87,37% (Kappa ¼
0,8528). La contribution de diff�erentes caract�eristiques �a la classification des milieux humides
est obtenue �a l’aide d’indices spectraux et de v�eg�etation et des param�etres de texture, de
g�eom�etrie et contextuels.
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Introduction

Wetlands are some of the most important and valu-
able ecosystems that provide many well-documented
ecosystem goods and services, such as flood control
and drought prevention, water purification and
groundwater recharge, sediment retention and stabil-
ization, runoff control and climate regulation, etc.
(Mahdavi et al. 2017; Mahdianpari et al. 2020; Powers
et al. 2012; Ji et al. 2015). Over the past century, wet-
lands are increasingly disturbed by human activities,
and a large number of wetlands have been forcibly
converted into agricultural and urban land with a glo-
bal trend of disappearance or degradation (Davidson
2014; Alvarez-Cobelas et al. 2007). Wetland degrad-
ation will not only lead to its decline of ecosystem
services but also affect the health and well-being of all
human beings. Therefore, it is urgent for us to prop-
erly manage and protect wetlands.

Nowadays, satellite remote sensing technology is
fast and efficient for monitoring the wetland ecosys-
tem when compared to conventional field work, and
has been widely used in wetland classification,
dynamic change monitoring and resource investiga-
tion, etc. (Chen et al. 2020; Lv et al. 2019; Cao et al.
2018). Currently, the MSI with medium and high spa-
tial resolution is the main data source for wetland
classification, such as Sentinel-2A/B, Worldview-2 and
GF-1, etc. For example, Lou et al. (2020) used the GF-
1 and ZY-3 data to conduct the Honghe National
Nature Reserve marsh vegetation mapping, and the
results showed that the performance of GF-1 image
applied to marsh vegetation mapping is higher than
that of ZY-3 image, but both images had higher classi-
fication accuracy for forest, cropland, shrubs, and
open water. Wang et al. (2019) selected Worldview-2
and Landsat-8 images to carry out the Linhong
Estuary wetland Land-Cover Classification in
Lianyungang, and pointed out that the high-resolution
Worldview-2 MSI was more suitable for small-scale
wetland land use classification than the medium-
resolution Landsat-8 images. Unfortunately, these high
spatial resolution images, such as Worldview-2,
Ikonos, Quickbird or even Pleiades, have an associated
high cost of data acquisition and cannot allow suffi-
ciently frequent sampling to monitor wetland habitats
continuously (Alvarez-Vanhard et al. 2020).

In recent years, GE tool (http://www.google.com/
earth/index.html), released in 2005, as a free and open
data platform, has developed rapidly and widely used
in many fields, such as data collection, validation,
visualization, and data integration, etc. (Mering et al.
2010; Kaimaris et al. 2011; Yu and Gong 2012; Clark

et al. 2010; Pulighe et al. 2016). The GE image is an
integration of very high spatial resolution images and
is free, while its resolutions can achieve up to sub-
meter levels (Guo et al. 2016). And the high spatial
resolution GE images have only three bands: red,
green, and blue (RGB). Due to the poor spectral infor-
mation, there have not been too many finer wetlands
mapping based on GE images, as they are mainly
used for urban land use classification, urban impervi-
ous surface area extraction and village buildings iden-
tification (Hu et al. 2013; Huang et al. 2018; Guo
et al. 2016). For instance, Guo et al. (2016) selected
GE RGB images to perform village building identifica-
tion at Savannakhet province in Laos with pixel-based
supervised machine learning methods, and the experi-
mental results showed that the AdaBoost method
achieves an overall accuracy of 96.22% while the CNN
method is an overall accuracy of 96.30%. Hu et al.
(2013) selected a GE image for a case study in Wuhan
City to perform an object-based land use classifica-
tion. It was found that high spatial resolution GE
image had some potential for regional land use map-
ping with a 78.07% overall accuracy. And the main
factor that restricts the improvement of classification
accuracy is its poor spectral characteristics, with only
three bands of red, green and blue, and the gray value
of each band is only between 0 and 255.

Low-altitude UAVs have developed rapidly in
recent years, provided a new low-cost remote sensing
data source with unrivaled properties, which can
acquire multi-angle and very high-resolution remote
sensing data based on the user’s interests, and less
restricted by the condition of landing sites or cloud
cover (Anderson and Gaston 2013; Alvarez-Vanhard
et al. 2020). Due to this flexibility and efficiency, they
are very popular in wetland mapping and monitoring,
a good supplement to satellite data. (Bendig et al.
2015; Li and Li 2014; Watts et al. 2012). Because of
the complex types of wetland vegetation, current wet-
land classification using UAV remotely sensed data is
dominated by multispectral or hyperspectral images.
For instance, Cao et al. (2018) used UAV hyperspec-
tral images and digital surface model (DSM) to carry
out offshore mangrove wetlands classification using
OBIA method. Abeysinghe et al. (2019) selected the
UAV MSI and machine learning classifiers to map-
ping wetland invasive Phragmites australis. Only a few
studies used the consumer-level UAV with ordinary
optical cameras to carry out wetland vegetation classi-
fication. Pande-Chhetri et al. (2017) used high-
resolution UAV RGB images and OBIA method to
mapping the Eagle Bay wetland in South Florida,
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considering the multi-source features. But the classifi-
cation accuracy was relatively low, the scenario of
highest overall accuracy was only 70.78%. Wetlands
need a continuous observation and monitoring, which
might become a complex task. And only the RGB sen-
sor should be considered as a low-cost application
(Brook et al. 2020).

Both GE and UAV RGB images have high spatial
resolution with poor spectral characteristics, but the
spectral information is the most important in wetland
vegetation classification. Therefore, they have obvious
limitations in finer and high accuracy wetland land
use mapping. To solve this problem, some scholars
have fused UAV RGB image with Sentinel-2A/B and
Landsat-8 data to make up for the limitations of UAV
RGB image spectral resolution. For example,
Jenerowicz and Woroszkiewicz (2016) presented
fusion of Landsat-8 and UAV image for distinguishing
agricultural crop types. Zhao et al. (2019) fused UAV
and Sentinel-2A images to map finer crop distribution
using pixel-based machine learning classification
method. Alvarez-Vanhard et al. (2020) firstly tested
spectral synergies between UAV and Sentinel-2 data
to map habitat mapping, which illustrated well the
great potential of combined UAV and satellite data.

Wetland vegetation type is complex and spectral
confusion is more serious with many small or patchy
habitat types. Therefore, it is more difficult than crop-
land/urban land use classification. Currently, there is
no relevant research on small-scale wetland finer clas-
sification using ultra-high spatial resolution GE
images to explore its applicability in wetland mapping.
Although the UAV RGB images have been used for
wetlands mapping, the classification accuracy is still
low due to its poor spectral resolution. And there are
also some attempts to combine the pro and cons of
space-borne and UAV RGB data to perform crop clas-
sification based on the pixel-based method while lack-
ing detailed exploration in complex wetland
classification. Moreover, the pixel-based method can-
not make use of the spatial information of ultra-high
spatial resolution GE and UAV images, and the “salt
and pepper” noise is serious (Duro et al. 2012;
Blaschke 2010; Ma et al. 2017).

In view of this, the purpose of this study is to test
the applicability for the fusion of GE or UAV RGB
images with Sentinel-2A data in finer karst wetland
vegetation classification. In order to overcome the
effect of “salt and pepper” noise and make full use of
the information of high spatial resolution images,
object-based image analysis (OBIA) is used. The
parameters, named ntree and mtry are optimized in

object-based RF algorithm model, in order to improve
classification accuracy. A further objective has been to
evaluate the contribution of multidimensional features
to wetland classification through the multi-feature
combination scenarios and RF variable importance.
This study can provide a new idea for data source
selection, segmentation parameters selection, object-
based RF parameters optimization and classification
features selection. Section 2 shows the data and meth-
ods, results and analysis are presented in Section 3,
and discussion and conclusions are given in Sections
4 and 5, respectively.

Data and methods

Study area

The Huixian wetland is a comprehensive natural
wetland composed of swamps, rivers, and lakes, and
has significant characteristics of a karst area, located
in Guilin, Guangxi province, China
(25�0103000N�25�1101500N, 110�0801500E�110�18’0000E)
(Figure 1). It is part of the Lijiang River system and
plays a key role as water supply resources for Guilin
city, known as the “kidney of Lijiang” (Xiao et al.
2019). In 2012, it was listed as a National Wetland
Park pilot by the State Forestry Administration and
named as “Huixian Karst National Wetland Park in
Guilin, Guangxi province, China.” Since the 1970s,
the ecological system of Huixian karst wetland has
been seriously affected due to the intensification of
human interference and lack of effective protection
measures. Nowadays, the water surface has gradually
shrunk, the wetland area is decreasing and the core
area is less than 6 km2 in the dry season. The diversity
of plants and animals has decreased, part of the wet-
land center is occupied by fish ponds and farmland.
In addition, invasive species such as Hyacinth and
Amazonian snail are threatening the few remaining
wild plant species (Mingwu et al. 2010).

Data

The original UAV remotely sensed images were cap-
tured by FC220 camera mounted on the DJI Royal
Mavic Pro UAV, with lens Angle of �90�, course
overlap rate of 80% and side overlap rate of 65%. The
data acquisition time was 10:30 am on August 26,
2018, when the weather was clear and cloudless, four
flight were carried out flying at an altitude of 105m.
A Pix 4D Mapping software was selected do the UAV
image processing to obtain digital orthophoto model
(DOM) required to construct remotely sensed
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recognition model. In addition, some UAV images
preprocessing operations, such as geometric correc-
tion, image mosaic, homogenizing, and clipping
(1,100m � 510m), were carried out. Finally, the spa-
tial resolution of UAV images was all down-sampled
to 0.1m on considering both the efficiency of image
classification and the classification refinement level.
The GE image with the 0.27m spatial resolution was
downloaded via free software called 91 weitu (http://
www.91weitu.com/), whose GE images is from GE
7.1.8.3036 (32-bit), and the sensor time on September
4, 2019. Similarly, the GE image was geometric-
ally corrected.

The Sentinel-2A images were acquired from the
European Space Agency Sentinel Data Hub (https://
scihub.copernicus.eu/) for the August 21, 2018 and
September 5, 2019 with the MSI instrument. They
were closest to the acquisition time of GE and UAV
images. And the Sentinel Application Platform
(SNAP) was used to preprocess the Sentinel-2A data.

A summary of the image datasets used in this study
can be found in Table 1.

Apart from acquiring the high spatial resolution
UAV RGB images of the study site, field surveys for
the characteristics and spatial distribution of wetland
vegetation clusters were carried out synchronously. A
sub-meter handheld GPS device was used to record
the precise locations of samples. From the filed
experience, it was found that vegetation types of the
study area were complex, dominated mixed forest and
mixed herbaceous vegetation (Table 2). In addition,
the invasive hyacinth also occupied a large proportion,
mainly distributed in karst lakes and mixed with lotus.
And the sampling data were divided randomly in half
for training and testing, respectively (Table 2).

Methodology

In this study, the GE and UAV RGB images fused
with Sentinel-2A data, respectively, to achieve high
precision and detailed small-scale wetland classifica-
tion using object-based RF algorithm. The classifica-
tion scheme mainly consisted of four steps (Figure 2):
(1) fusion of GE and UAV images with Sentinel-2A,
respectively, to obtain GE and UAV MSI as classifica-
tion remote sensing datasets; (2) the Fractal Net
Evolution Approach (FNEA) Multi-Resolution

Table 1. Summary of remotely sensed datasets used for
this study.
Sensor name Sensor time Band information Resolution (m)

Sentienl-2A 21/08/2018 RedþGreenþ BlueþNIR 10
Sentienl-2A 05/09/2019 RedþGreenþ BlueþNIR 10
UAV Data 26/08/2018 RedþGreenþ Blue 0.10
GE Data 04/09/2019 RedþGreenþ Blue 0.27

Figure 1. Study area situated in Guilin (Guangxi province, China).
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Segmentation (MRS) was used to segment the images
with a selection of the optimal segmentation parame-
ters (scale, shape and compactness); (3) feature extrac-
tion from fusion GE and fusion UAV MSI images,
respectively, including spectral features, vegetation
indexes, texture features, geometric and contextual
features, and multi-feature combination classification
scenarios were built; (4) object-based RF algorithm
models were conducted, and the parameters, named
ntree and mtry were optimized; (5) classification

accuracy assessment was applied with overall accuracy
(OA), kappa coefficient (Kappa), user’s accuracy
(UA), produce’s accuracy (PA). The contribution of
multi-features used in this study for wetland finer
classification was analyzed.

Image fusion
Image fusion is to process the multi-source data with
redundant or complementary information based on
certain rules or algorithms, in order to obtain more

Table 2. Classes and samples used in the classification.
Classification type Vegetation association GE training samples GE testing samples UAV training samples UAV testing samples

Paddy None 39 39 44 44
Exposed land Uncultivated farmland, River floodplains 49 48 46 45
Mixed forest Linden, Bamboo, Paliurus 71 70 83 83
Mixed grass Bermuda grass, Eleusine indica, Paspalum 68 67 67 66
Hyacinth None 31 31 41 41
Lotus None 32 32 37 37
Road-building Road, Wooden trestle, Building 30 30 38 37
Water Karst river, Karst lake 56 55 52 52
Shadow None – – 53 52

Figure 2. Flowchart of object-based wetland vegetation identification.
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accurate and richer information than any single data,
and generate a composite image with new spatial and
spectral characteristics. In this study, a GS pansharp-
ening algorithm was used to fuze GE image and UAV
image with Sentinel-2A data, respectively. This fusion
algorithm could better improve the spatial details and
spatial resolution of the original image while main-
taining the spectral physical properties to the max-
imum extent (Mhangara et al. 2020; Tao et al. 2015).
Before image fusion, a histogram matching was con-
ducted for GE and UAV RGB image using the
Sentinel-2A RGB images of the corresponding date,
respectively. Then, calculated the mean of matched
GE image and UAV image and regarded them as the
high spatial resolution bands while the Sentinel-2A
was the low-resolution MSI in GS image fusion.
Finally, the NIR bands generated by fusion and
matched GE and UAV image were taken out for com-
posite band to obtain the fusion GE and UAV MSI. A
detailed process is shown in Figure 3. The NIR band
from fuzing GE/UAV and Sentinel-2A, the normalized
difference vegetation index (NDVI) and normalized
difference water index (NDWI) calculated the fuzing
GE/UAV image are shown in Figure 4.

Image segmentation
Image segmentation is a critical and important step in
object-based classification, which is the process of
dividing the image into spatially cohesive regions. The
FNEA MRS probably the most popular algorithm in
wetland vegetation identification, which segments the
imagery into spectrally homogeneous, contiguous
image objects in a bottom-up region-merging
approach (Hossain and Chen 2019; Belgiu and Dr�aguţ
2014). Segmentation results are greatly influenced by
the image quality, the number of image bands, the
image resolution and the complexity of the scene
(Belgiu and Dr�aguţ 2014). It is very important to

select reasonable FNEA MRS parameters, both “under
segmentation” and “over segmentation” will influence
the final classification results (Belgiu and Dr�aguţ 2014;
Dr�aguţ et al. 2014). In the FNEA MRS approach,
there are three important parameters: scale, shape and
compactness. And among them, the scale index is con-
sidered to be the most important parameter, a hot
topic in FNEA MRS, which can make a greater impact
on classification accuracy compared with the other
two parameters. For example, Dr�aguţ et al. (2010)
developed a scale parameter automatic selection tool
for the eCognition software in 2010, named estimation
of scale parameter (ESP), and this tool was improved
in 2014 (Dr�aguţ et al. 2014), general said the
improved tools for the ESP2, which could work on
multiple layers compared with ESP. For the other two
parameters, the optimization is mostly based on
experience and trail-and-error fashion. For instance,
Whyte et al. (2018) used trail-and-error fashion to
optimize the FNEA MRS parameters when mapping
the Greater St. Lucia Wetland Park using object-based
machine learning algorithms. And the results showed
that a low shape ratio produced the best segmenta-
tion results.

In this present study, the bands involved in the
FNEA MRS included red, green and blue, intensity
from HSI color space, red green ratio index (RGRI),
based on fuzing GE/UAV images. And the weightings
were set to 1,1,1,2,2, respectively. The MRS parame-
ters weightings of shape and compactness were chosen
through trial and error. Based on the vision analysis,
shape and compactness was set as 0.3 and 0.5
respectively.

The ESP2 tool was used to choose the optimal scale
parameter. This method relies on the potential of the
local variance (LV) to detect scale transitions in geo-
spatial data and identifies patterns in data at three dif-
ferent scales, ranging from fine objects (Level 1) to

Figure 3. The flowchart of UAV/GE and Sentinel-2A images fusion using GS transformation.
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broader regions (Level 3). And the different scale
parameters correspond to the inflection points of the
LV curve, selecting the appropriate scale index can
use the appropriate segmented objects to represent
ground features in detail and precisely. After com-
parative analysis for the inflection points of the LV
curve, fine scale factor of the fuzing GE and UAV
images was set as 72 and 238, respectively. Finally,
4,260 and 9,282 segmentation objects were obtained,
respectively. The local MRS results of fusion GE and
UAV MSI are shown in Figure 5.

Feature extraction
Following the image segmentation step, feature extrac-
tion represents another fundamental step in object-
based classification. The ideal variables should make
the segmented image objects highly separable (Duro
et al. 2012). Due to the complexity of wetland vegeta-
tion types, multi-source object features were consid-
ered including spectral features, vegetation indexes,
texture features, geometric features and contextual
variables, based on fuzing GE and UAV images, as
listed in Table 3. (1) Spectral bands, including mean

Figure 4. Image fusion results of NIR band and calculated vegetation index.
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and standard deviation of red, green, blue, near infra-
red (NIR) and first component of principal compo-
nent analysis (PCA) for RGB bands, hue (H),
saturation (S) and intensity (I) from HSI color space.
In addition, brightness and max.diff (maximum inten-
sity difference) were considered. (2) 15 vegetation

indices (Table 4) were chosen, including red green
ratio index (RGRI), normalized difference vegetation
index (NDVI) and normalized difference water index
(NDWI), etc. (3) texture features based on Gray level
co-occurrence matrix (GLCM) (Table 3), including
mean, variance, entropy and angular second moment,

Figure 5. Local MRS results of fuzing GE and UAV images.

Table 3. Object features used for classification.
Object features Description

Spectral features 18 Spectral features, including mean and standard deviation of R, G, B,
NIR, H, S, I, and PCA. Brightness, and max.diff.

Vegetation indices 15 VIs, including RGRI, NGBDI, NGRDI, EXG, VDVI, NDVI, NDWI, RVI, GNDVI,
DVI, EVI2, TVI, SAVI, TTVI, and MSAVI2

Textural features 24 Textural features, including ASM, CON, COR, ENT, HOM, MEAN, DIS, and
StdDev calculated using GLCM with three bands (band PCA, band I,
and band NIR).

Shape and contextual features 19 Geometric and Contextual Features, including Border Index, Area,
Compactness, Y Max, Shape Index, Y Distance to Scene Bottom Border,
X Center, Volume, Length/Width, X Distance to Scene Left Border,
Length, Rectangular Fit, Y Center, Number of Pixels, X Max, Average
Length of Edges (Polygon), Asymmetry, Width, and Border Length

Table 4. Vegetation indices involved and their calculation formulas.
Indices (VIs) Formula Description

RGRI Red/Green Red green ratio index
NGBDI (Green-Blue)/(Greenþ Blue) Normalized green-blue difference index
NGRDI (Green-Red)/(Greenþ Red) Normalized green-red difference index
EXG 2�Green-Red-Blue Excess green
VDVI (2�Green-Red-Blue)/(2�Greenþ Redþ Blue) Visible-band difference vegetation index
NDVI (NIR-Red)/(NIRþ Red) Normalized difference vegetation index
NDWI (Green-NIR)/(GreenþNIR) Normalized difference water index
RVI NIR/R Ratio vegetation index
GNDVI (NIR-Green)/(NIRþGreen) Green normalized difference vegetation index
DVI NIR-Red Difference vegetation index
EVI2 2.5�((NIR-Red)/(NIR þ 2.4�Red)þ1) Two-band enhanced vegetation index
TVI sqrt((NIR-Red)/(NIRþ Red)þ0.5) Transformed vegetation index
SAVI (1þ 0.5)�(NIR-Red)/(NIRþ Red þ 0.5) Soil adjusted vegetation index
TTVI sqrt(abs((NIR-Red)/(NIRþ Red)þ0.5)) Thiam’s transformed vegetation index
MSAVI2 (2�(NIR þ 1)-sqrt((2�NIR þ 1)�2-8�(NIR-Red)))/2 Adjusted vegetation index 2
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etc (Lu et al. 2014; Szantoi et al. 2015). Among them,
due to the high similarity between each band, only
texture features of PCA, I and NIR were extracted in
order to reduce data redundancy. (4) Compared with
pixel-based classification, OBIA can consider the adja-
cency relation of each segmented object to extract the
geometric and contextual features of the objects
(Canisius et al. 2011; Moffett and Gorelick 2013). 19
geometric and contextual features that has been fre-
quently used in previous studies were chosen, such as
border index, shape index and asymmetry, etc., as
listed in Table 3.

Object-based RF algorithm
RF is an ensemble classifier algorithm, proposed by
Breiman Leo and Adele Cutler in 2001 (Breiman
1996; Breiman 2001). Compared with other machine
learning classifiers, RF works well with the curse of
dimensions and highly correlated data, less sensitive
to the quality of training samples and to overfitting
(Belgiu and Dr�aguţ 2016). And it is very popular in
wetland information extraction from hyperspectral,
multispectral, radar, LiDAR and thermal remote sens-
ing imagery (de Almeida Furtado et al. 2016;
Mahdianpari et al. 2017; Thonfeld et al. 2020). In this
algorithm, two important parameters are involved,
namely, the maximum number of trees (ntree) and
the number of split variables (mtry), and the reason-
able selection for them is a hot issue in RF remote
sensing classification. Some suggest that the default
value of 500 for ntree is an acceptable value and mtry
is set to the square root of the number of input varia-
bles (Lawrence et al. 2006; Ghosh and Joshi 2014;
Belgiu and Dr�aguţ 2016). However, there are also
some different opinions (Lou et al. 2020). In this
study, different combinations of ntree and mtry
parameters were designed to conduct the object-based
RF model, in order to analyze their influence on the
RF model construction. And the optimal RF models
were chosen to classify the fuzing GE and UAV MSI.

RF can not only realize the remote sensing classifica-
tion but also play an important role in feature dimen-
sionality reduction and feature importance evaluation
(Fu et al. 2017; Mahdianpari et al. 2017). RF is an
ensemble classifier that creates the decision trees by
drawing a subset of training samples through a bagging
approach. Bootstrap self-help sampling is used to

randomly select two-thirds of samples as a subset of
training samples (in-bag samples) with the remaining
one-third (out-of-the-bag (OOB) samples) are used in
an internal cross-validation technique for estimating RF
model performance (Belgiu and Dr�aguţ 2016). The
OOB error generated by OOB samples can not only
estimate the classification accuracy but also calculate the
contribute of features to classification. And the feature
importance estimation model is as follow (Zhang et al.
2019; Genuer et al. 2010; Fu et al. 2017):

VIðFAÞ ¼ 1
ntree

Xntree
t¼1

errOOBFA
nt � errOOBFA

Qt

� �
(1)

Where VI is the variable importance, F is the whole
number of sample features, ntree is the number of deci-
sion trees, errOOBFA

Qt
is the OOB error of the decision

tree t when no noise interference is added to any feature
FA, and errOBBFA

nt is the OOB error of the decision tree
t when noise interference is added to any feature FA.

Results and analysis

Classification scenarios

In this study, three classification scenarios of different
feature combination were designed for fuzing GE and
UAV MSI, respectively, as shown in Table 5. The pur-
poses of setting up different scenario for classification
were as follows: (1) Analyzed the contribution of diffi-
dent features to object-based wetland classification. (2)
Estimated the efforts of ntree and mtry on the accur-
acy of object-based RF model construction under dif-
ferent feature variables and images objects.

RF parameters optimization

Through the corresponding algorithm improvement,
different combinations of ntree and mtry parameters
were set to optimize the object-based RF model for
each GE and UAV classification scenario. And the
final optimization results were shown in Figure 6 and
Table 6. It was found that the fluctuation range of the
training accuracy of object-based RF is about 2%-3%
in each scenario. The training accuracy of the optimal
models of each scenario reached over 85%. The RF
parameters optimization results of fuzing GE and
UAV MSI classification scenarios were consistent, this

Table 5. The information of experimental programs.
GE scenario UAV scenario Description

1 1 Spectralþ VI Features
2 2 Spectralþ VIþGLCM Texture (PCA, I, and NIR) Features
3 3 Spectralþ VIþGLCM Texture (PCA, I, and NIR) þ Shape and Contextual Features
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is, the scenario 3 had a highest training overall accur-
acy, and the UAV scenario3 (0.9280) was higher than
GE scenario3 (0.8854).

Classification results

The three object-based RF classifications results with
parameters (ntree and mtry) optimization for fuzing

Figure 6. Object-based RF parameters (ntree and mtry) tuning of fuzing GE/UAV MSI.

Table 6. The optimal parameter of object-based RF model for
fuzing GE/UAV MSI.

Selected features mtry ntree Accuracy

GE Scenario1 33 11 300 0.8538
GE Scenario2 57 39 800 0.8713
GE Scenario3 76 3 500 0.8854
UAV Scenario1 32 3 3000 0.8769
UAV Scenario2 56 3 1400 0.9048
UAV Scenario3 75 5 1000 0.9280
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GE and UAV MSI can be seen in Figures 7 and 8,
respectively. It was found that the wetland vegetation
in this study area was well characterized, among
which mixed forest and mixed grass accounted for the
largest area. The mixed forest was mainly distributed
around karst lakes and rivers, composed of Linden,
Bamboo and Paliurus, mixed together. The current
condition was not optimistic for Huixian Karst
Wetland, which urgently needed the reasonable man-
agement and protection of human beings. The inva-
sive species, named Hyacinth, had seriously affected
the wetland ecological environment. However, the
condition of the Hyacinth mixed with Lotus in the
northeast was improved in 2019 (fusion GE MSI),
compared with the condition in 2018 (fusion UAV
MSI). But the Hyacinth growing in karst lakes in the
southwest was still severe.

For the classification results of three GE scenarios,
both GE scenario1 and 2 were relatively poor. For
example, the exposed land in karst lakes in the north-
east of the study area and the road-building in the
southwest were not completely extracted in GE scen-
ario1 and 2, and some small patches with mixed forest
or mixed grassland were wrongly identified as
Hyacinth. According to visual judgment and based on
several field investigations, the GE scenario3 provided
better performance.

For the classification results of three UAV scen-
arios, the phenomenon that the shadows were misi-
dentified as water hyacinth was common, especially in
the UAV scenario1. In UAV scenario1 and scenario 2,
some exposed land objects in the northeast of study
area were misidentified as road-building, and the
extraction result for road-building in the south was

Figure 7. Classification results of fuzing GE MSI.
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incomplete. Therefore, the UAV scenario3 had better
performance compared with the other two
UAV scenarios.

Accuracy assessment

To evaluate the classification scenarios combined with
the multi-source feature combination and the opti-
mized object-based RF algorithm, and to estimate the
applicability of fuzing GE and UAV MSI in wetland
finer classification, the accuracy of classification
results was verified with the testing samples collected
in the field, as shown in Table 7.

It was found that the UAV scenarios provided a
higher classification accuracy compared with the cor-
responding GE scenarios, which is about 5%-7%
higher on average. For instance, the GE scenario1,
combined with the spectral and vegetation features,

provided an OA of 82.53% (Kappa ¼ 0.7966), while
UAV scenario1 had an OA of 88.84% (Kappa ¼
0.873). On the basis of spectral features and vegetation
indexes, GLCM texture and geometric and contextual
features were considered respectively in classification
scenarios, GE/UAV scenario2 and 3 showed relatively
consistent regularity. The OA of GE/UAV sceanrio2
was improved by about 3% compared with scenario1
and 2% for GE/UAV sceanrio3 compared with scen-
ario2. The highest classification accuracy of fuzing
GE/UAV MSI was achieved in scenario3. The OA of
GE scenario3 was 87.37% (Kappa ¼ 0.8528), while
UAV scenario3 was 94.31% (Kappa ¼ 0.9353).

Although the OA and Kappa were improved from
GE/UAV scenario1 to scenario3, there was a great dif-
ference for the UA and PA of single vegetation type
in classification. Not all of them showed an increasing
tendency, and the classification accuracy of a few

Figure 8. Classification results of fuzing UAV MSI.
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single vegetation type was reduced. For example, the
UA and PA of mixed forest, mixed grass and hyacinth
were improved while those of lotus were decreased
from GE/UAV scenario1 to scenario2. From UAV
scenario2 to scenario3, the UA of hyacinth and mixed
grass were also decreased.

Feature importance evaluation

The feature importance estimation participating in GE
and UAV classification scenario3 was carried out
based on RF algorithm, and the results were normal-
ized, as shown in Figures 9 and 10 (features that the
score greater than 0.5 were selected). On the whole,

Figure 9. The feature importance distribution of GE scenario3 (features that the score greater than 0.5 were selected).

Table 7. Three different feature combination classification scenarios are constructed for fusion GE and UAV MSI, respectively,
based on selected features. [Trois sc�enarios diff�erents de classification des combinaisons de fonctionnalit�es sont construits pour la
fusion GE et UAV MSI, respectivement, en fonction de fonctionnalit�es s�electionn�ees.]

GE Scenario1 GE Scenario2 GE Scenario3 UAV Scenario1 UAV Scenario2 UAV Scenario3

UA/% PA/% UA/% PA/% UA/% PA/% UA/% PA/% UA/% PA/% UA/% PA/%

Paddy 92.1 89.7 91.9 87.2 92.1 89.7 88.9 90.9 91.1 93.3 100 93.2
Exposed land 91.3 87.5 91.5 89.6 90 93.8 89.6 95.6 89.4 93.3 91.7 97.8
Mixed forest 77 81.4 82.1 91.4 82.9 97.1 78.8 94 85.9 95.2 91.7 92.8
Mixed grass 77.3 86.6 81.3 91 87.7 85.1 86 65.2 93 80.3 89.4 89.4
Hyacinth 68.2 48.4 80 51.6 89.5 54.8 94.1 78 94.6 85.4 92.7 92.7
Lotus 93.3 87.5 93.1 84.4 96.7 90.6 92.3 97.3 91.9 91.9 94.4 91.9
Road-building 97.5 93.3 87.9 96.7 90.3 93.3 97 86.5 91.4 86.5 100 91.9
Water 80 80 83 80 80.7 83.6 96.2 96.2 98.1 100 98.1 100
Shadow – – – 91.2 100 96.3 100 96.3 100
OA/% 82.53 85.48 87.37 88.84 91.90 94.31
Kappa 0.7966 0.8308 0.8528 0.873 0.9079 0.9353

The object-based random forest (RF) algorithms with parameters (mtry and ntree) optimization are used to carry out finer wetland classification. Results
show that the fusion GE and UAV MSI have good applicability in the finer wetland classification, especially the fusion UAV images, and integrating
multi-source features could improve classification accuracy. Both data sources reach the highest accuracy in scenario3. The overall accuracy of fusion
UAV image scenario3 is 94.31% (Kappa¼ 0.9353), and that of fusion GE image scenario3 is 87.37% (Kappa¼ 0.8528). The contribution of different fea-
tures to wetland classification is obtained with spectral and vegetation indexes>texture features>geometric and contextual features. [Les algorithmes
de forêt al�eatoire (RF) bas�es sur des objets avec optimization des param�etres (mtry et ntree) sont utilis�es pour effectuer une classification plus fine des
zones humides. Les r�esultats montrent que la fusion GE et UAV MSI ont une bonne applicabilit�e dans la classification plus fine des zones humides, en
particulier les images uav fusion, et l’int�egration de fonctionnalit�es multi-sources pourrait am�eliorer la pr�ecision de classification. Les deux sources de
donn�ees atteignent la plus grande pr�ecision dans le sc�enario3. La pr�ecision globale du sc�enario d’image uav fusion3 est de 94,31% (Kappa ¼ 0,9353),
et celle du sc�enario d’image GE fusion3 est de 87,37% (Kappa ¼ 0,8528). La contribution de diff�erentes caract�eristiques �a la classification des milieux
humides est obtenue �a l’aide d’indices spectraux et de v�eg�etation> exp�eciations detexture> g�eom�etriques et contextuelles.of GE/UAV classifica-
tion accuracy.]
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the feature importance scores of GE and UAV sce-
naro3 showed a relatively consistent result, this is,
spectral feature and vegetation index scored the high-
est, followed by texture feature, and finally geometric
and contextual feature. Specific to local analysis, it
was found that the importance of spectral features of
fusion NIR band was lower than other spectral fea-
tures. The texture feature scores of GE and UAV
scenario3 were quite different, but the entropy and
homogeneity texture features calculated from GLCM
showed a high importance in both datasets. In add-
ition, the texture features based on PCA and I were
more important than those extracted from NIR bands.
For vegetation indexes, NGBDI and RGRI showed
high importance in both fuzing GE and UAV feature
datasets. Among the geometric and contextual fea-
tures, polarization was very serious. The importance
of border index, shape index, number of pixels and
volume were relatively high compared with the other
geometric and contextual features.

Discussion

Wetland vegetation types are complex and the spec-
trum confusion is serious. Finer classification of
small-scale wetland using GE and UAV RGB images
has obvious limitations, which makes it difficult to
provide reasonable identification accuracy. And the
classification scheme with medium resolution

Landsat-8 or Sentinel-2 is limited by poor spatial reso-
lution. Therefore, GE/UAV images and Sentinel-2A
were fused with GS transformation to obtain ultra-
high spatial resolution MSI. NDVI and NDWI were
calculated based on fuzing GE and UAV MSI, and
both of them could better represent the different vege-
tation types in wetlands (Figure 4). The difference
between non-vegetation and vegetation was obvious,
which was helpful to realize the finer and high preci-
sion classification. In addition, object-based RF algo-
rithm was chosen to explore the applicability of fuzing
GE and UAV MSI in finer small-scale wetland classifi-
cation with high precision, in order to avoid the influ-
ence of “salt and pepper” in pixel-based classification
for ultra-high spatial resolution images.

The shape and compactness parameters of FNEA
MRS were selected by trial-and-error fashion. By ana-
lyzing those results, it was found that the change of
shape parameter was more sensitive to the quality of
the FNEA MRS results compared with compactness
index, and setting a smaller shape parameter was eas-
ier to obtain the ideal segmentation results, which was
also consistent with the results obtained by Whyte
et al (2018). The subjective intervention of human
was avoided as far as possible when selecting the scale
index suitable for FNEA MRS. The ESP2 tool was
used for iterative segmentation, which relies on the
potential of local variance (LV) to detect scale trans-
formations in geospatial data. This tool is so popular

Figure 10. The feature importance distribution of UAV scenario3 (features that the score greater than 0.5 were selected).
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and has a good applicability in scale parameter selec-
tion in object-based classification (Tian et al. 2020;
Belgiu and Dr�aguţ 2014). But it is only a semi-auto-
matic scale parameter selection tool. The local vari-
ance curve will be very gentle and the inflection point
is not obvious when the segmentation initial parame-
ters are set unreasonably. And it needs to reset the
parameters for iterative segmentation. During the
FNEA MRS process, the RGRI and I bands were
involved and given higher weighting in addition to
the RGB bands of fuzing GE and UAV MSI. In this
way, better segmentation results could be obtained.
The exposed land, hyacinth and paddy of fuzing GE
and UAV MSI had high homogeneity, and its seg-
mented objects of FNEA MRS were more orderly and
smoother. However, lotus and mixed forest had high
heterogeneity, and the large number of fragmented
patches posed a challenge to the finer and high preci-
sion classification, as shown in Figure 5.

By analyzing the optimal parameters (ntree and
mtry) of object-based RF model training (Table 6), it
was found that they were not consistent with the pub-
lishing opinions that setting ntree as 500 and mtry as
the square root of input variables could provide better
RF model construction accuracy (Lawrence et al.
2006; Ghosh and Joshi 2014; Belgiu and Dr�aguţ 2016).
The optimal ntree parameter for fuzing UAV MSI was
generally larger than that for GE images, while the
optimal mtry parameter was smaller than that for fuz-
ing GE MSI. Therefore, it could infer that the optimal
mtry and ntree parameters may be related to the num-
ber of image objects of FNEA MRS in object-based
RF model training.

Due to higher image quality (spatial resolution, tex-
ture and geometric features) for the fuzing UAV MSI,
its extracted classification features were better than
fuzing GE image. The final feature extraction and
classification in OBIA is highly dependent on the
quality of image segmentation. After the FNEA MRS
process, the segmentation result of fuzing UAV image
was better, which can define vegetation boundary and
expressing wetland scattered patches more accurately.
And under the optimal segmentation parameter con-
dition, the fuzing GE image had 4,260 segmentation
objects while 9,282 objects were obtained for the fuz-
ing UAV image. Thus, the classification accuracy of
UAV scenarios was better than that of GE scenarios,
which indicated that fuzing UAV MSI was more suit-
able for finer small-scale wetland classification, com-
pared with fuzing GE MSI. Spectral features and
vegetation indexes are the most widely used in wet-
land vegetation classification (Rampi et al. 2014;

Dronova 2015). Both fuzing GE and UAV MSI
achieved OA of over 80% in scenario1, respectively,
only spectral and vegetation features were involved. In
addition, it was found that the scores of spectral and
vegetation indexes were the highest when analyzing
the estimation results of feature contribution (Figures
9 and 10), which also showed the necessity of increas-
ing the spectral resolution of GE and UAV RGB
images in this study. Texture features were also widely
used, while geometric and contextual features were
less used than others (Dronova 2015). The OA and
Kappa were significantly improved when considering
the texture feature, geometric and contextual features
on the basis of GE/UAV scenario1. And the accuracy
improvement of scenario2 was higher than that of
scenario3 (Table 7), indicating that texture features
were more important than geometric and contextual
features, which could also be verified from the evalu-
ation results of feature importance. Although the
scenario that combined the multi-source features
could provide a higher OA, the UA and PA of single
vegetation type varied greatly. For example, the classi-
fication accuracy of lotus and road-building had a ten-
dency of decrease when adding texture feature to GE/
UAV scenaro1. Therefore, it was necessary to reason-
ably chose the features used in classification scenario
based on the characteristics of the ground objects.

By analyzing the feature importance evaluation
results (Figures 9 and 10), it was found that the
results of fuzing GE and UAV MSI showed consistent
regularity with spectral and vegetation featur-
es> texture features> geometric and contextual fea-
tures. The contribution of spectral and texture
features of PCA and I bands were significantly higher
than those of NIR band, which may be related to the
quality of fuzing images. The geometric and context-
ual feature importance were seriously differentiated in
the two datasets. There were only eight variables with
importance scores greater than 0.5 (8/19). Therefore,
geometric and contextual features cannot be blindly
added when selecting feature variables using object-
based classification. There were also local differences
for the GE and UAV feature importance. Dissimilarity
texture scored higher in UAV scenario3 feature data-
set, but it did not appear in the feature importance
distribution of GE scenario3 shown in Figure 9. The
GE and UAV scenario3 differed in the importance of
texture features, which was related to the image qual-
ity and resolution to some extent. The spatial reso-
lution of UAV image was higher than GE image, and
the heterogeneity of mixed forest and lotus was higher
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in fuzing UAV MSI, which resulted in the difference
of texture feature importance in two datasets.

In addition, there were some uncertainties in GE
and UAV classification scenarios. The vegetation types
of mixed forest and mix grass were complex. Among
them, the mixed forest was mainly composed of
Linden, Bamboo and Paliurus, while the mixed grass
consisted of Bermuda grass, Eleusine indica and Ditch
millet, mixed together. It was difficult to further dis-
tinguish them using fuzing GE and UAV MSI.
Therefore, they were classified as a vegetation cluster
in this study respectively, named mixed forest and
mixed grass. High spatial resolution images were eas-
ily affected by the shadows of ground object, which
was particularly obvious in low-altitude UAV images
of this study. And the shadows were classified into a
separate class for each UAV classification scenario.
According to the statistical result, the shadow area of
UAV scenario3 was about 47,972m2, covering mainly
mixed forest and grass near the forest. As a result,
mixed forest and mixed grass areas were smaller than
they really one in UAV classification scenarios. The
shadows also caused some Hyacinth to be misclassi-
fied, especially in GE/UAV scenario1. And this phe-
nomenon had been improved to a certain extent when
combining multi-source variables in classifica-
tion scheme.

Conclusion

In this study, the fusion of GE and Sentienl-2A image,
fusion of UAV and Sentinel-2A image and optimized
object-based RF algorithm with multi-source feature
combination are used to carry out finer small-scale
wetland classification. The main conclusions are sum-
marized as follows: (1) The fuzing GE and UAV MSI
has good applicability in finer small-scale wetland
classification. The wetland vegetation and invasive
species named Hyacinth are accurately extracted, and
the classification accuracy could be improved by inte-
grating multi-source features using in classification
scenario. The overall accuracy of GE scenario3 and
UAV scenario3 is 87.83% and 94.31% respectively,
suggesting that the fuzing UAV MSI is better than
fuzing GE MSI in finer small-scale wetland classifica-
tion. (2) In FNEA MRS of object-based finer wetland
classification, the shape parameter is more sensitive to
image segmentation results compared with compact-
ness parameter. A small shape parameter possibly pro-
vided a reasonable segmentation result. In addition to
the original spectral bands, other image layers could
be added to optimize the FNEA MRS result, such as

vegetation indexes. (3) the size of ntree and mtry
parameters may be related to the number of seg-
mented image objects in object-based RF model con-
struction. The more image objects there are, the larger
the optimal ntree parameter will be, while the mtry
parameter will be smaller. (4) The contribution of dif-
ferent variables using in wetland classification scenario
is obtained with spectral and vegetation index-
es> texture features> geometric and context-
ual features.

The high spatial resolution images released by GE
have low temporal resolution, while the fluctuation of
wetland water level will cause rapid and frequent
changes of vegetation cover type, spatial distribution
and density. In the future, the finer dynamic monitor-
ing of wetland vegetation requires the multi-source
high resolution remote sensing data, and the GE
images can be used as a supplement. In addition, GE/
UAV images fused with Sentinel-2A data only pro-
vided vegetation cluster level classification in this
study. It was necessary to combine the UAV 3D point
clouds or hyperspectral data to achieve further
classification.
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