
1.  Introduction
Typhoon is a natural disaster with causing large losses and frequently occurs in west pacific regions, and therefore 
monitoring and predicting typhoons are important. Global Positioning System (GPS) observations provide oppor-
tunities for monitoring and studying typhoons because they are more widely distributed and capable of contin-
uous observation than other methods. The relationship between the ionospheric disturbances and the intense 
atmospheric activities has been found in the foF2 changes (Bauer, 1958) as well as the traveling ionospheric 
disturbances (Hung et al., 1978; Tsutsui & Ogawa, 1973). There are many claims for the cause of the disturbance, 
and gravity waves are the main reason (Chernogor et al., 2021, 2022). The acoustic gravity waves caused by the 
typhoon result in ionospheric disturbances (Tsutsui & Ogawa, 1973). Fritts and Alexander (2003) found that grav-
ity waves not only affect the lower atmosphere but also the middle atmosphere, however, the weak background 
winds are necessary for the continually upwards propagation of the gravity waves from the top of the troposphere 
argued by Yue et al. (2009). Although the ionospheric disturbances resulting from the typhoon-triggered gravity 
waves have been widely accepted, the relationship among them from the observable data is still incomplete.

Due to the low-frequency observations and the sparse stations, it is difficult to obtain intensive and real-time data 
using traditional methods. The ionospheric delay is one of GPS main errors (Jin et al., 2005; Jin & Su, 2020), 
and nowadays the Total Electron Content (TEC) can be obtained from dual-frequency GPS observations (Jin 
et al., 2022; Su et al., 2019), which can be used to determine ionospheric disturbances following earthquakes 
and typhoons. Earthquakes may cause ionospheric disturbances (Jin et al., 2011), but their horizontal propaga-
tion velocity (Cahyadi et al., 2022) and central frequency (Chai & Jin, 2021) are different from those caused by 
typhoons obviously. During Typhoon Matsa, Mao et al. (2010) found the typhoon affected the ionosphere before 
landfall, and the effect diminished as the typhoon landed from the ionospheric disturbances. Chou et al. (2017) 
observed multiple TIDs with periods of 8–30 min triggered by Typhoon Meranti. Song et al. (2019) reported 
the horizontal propagation velocities of the TIDs were 268 and 143 m/s using the GPS network data of China 
combined with observations of an ionosonde chain. Interestingly, there was no significant disturbance at the eye 
of the typhoon, and the disturbance at several stations became greater with the increasing distance to the eye (Wen 
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& Jin, 2020). The typhoon-induced ionospheric disturbances are reaching a 
maximum at a distance of 1,300 km from the typhoon eye, and are reduced 
progressively to zero at more than 2100 km (Chen et al., 2020). The variation 
in the propagation of the disturbance may be related to the propagation loss of 
gravity waves in the thermosphere (Vadas, 2007), and its propagation speed 
and period are gradually stabilized within 1,000 km from the typhoon eye 
(Zhao et al., 2020).

There are obvious differences among the results of the characteristics of 
typhoon-induced ionospheric disturbances caused by the different chosen 
typhoons and the coupling relations between typhoons and ionospheric 
disturbances (Chou et al., 2017; Wen & Jin, 2020). To answer how typhoons 

trigger gravity waves and how they propagate through the atmosphere, the ionospheric disturbance characteris-
tics triggered by several typhoons with different intensities and paths should be investigated and analyzed for the 
relationship between typhoons and ionospheric disturbance.

In this paper, we aim to study the disturbance characteristics following different typhoons near the Taiwan Island 
during the period of maximal intensity and wind speed. About 400 stations with a sampling interval of 30 s from 
the Taiwan GPS network are used to obtain the vertical TEC. The ionospheric disturbances triggered by multiple 
typhoons are extracted from TEC using the fourth-order Butterworth filter. The ionospheric disturbances are 
estimated during multiple typhoons from GPS-derived TEC. The detailed characteristics and relationship of the 
ionospheric disturbances are investigated from more typhoons. In the following, data and methods are shown in 
Section 2, results and analysis are presented in Section 3, and Discussion and conclusions are given in Sections 
4 and 5, respectively.

2.  Data and Methods
2.1.  Data

Data used in our study, including hourly typhoon eye position, moving direction, wind speed, and central pres-
sure, are from National Meteorological Center (NMC, http://typhoon.nmc.cn/web.html) (Table 1). According to 
the typhoon track shown in Figure 1, the Nepartak landed on southern Taiwan and the China mainland succes-
sively, while Lekima, Mitag, and Hagupit landed after passing through the waters of northern Taiwan. The GPS 
data with a sampling interval of 30 s are from Central Weather Bureau (CWB), Taiwan. The data from about 400 
stations were used in this study.

In this paper, four typhoons are selected for analysis, and the information of the typhoons is shown in Table 1.

Name
Date of 

born
Date of 
landfall

Date of max 
wind speed

Max wind 
speed

Nepartak (201,601) 2016.7.3 2016.7.9 2016.7.6 68 m/s

Lekima (201,909) 2019.8.4 2019.8.10 2019.8.8 62 m/s

Mitag (201,918) 2019.9.28 2019.10.1 2019.9.30 40 m/s

Hagupit (202,004) 2020.8.1 2020.8.6 2020.8.3 38 m/s

Table 1 
Typhoon Information

Figure 1.  (a) Typhoon tracks and (b) distribution of the Global Positioning System stations.

http://typhoon.nmc.cn/web.html
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Since solar and geomagnetic activities affect the ionosphere, their possible impacts on typhoon-induced iono-
spheric disturbances should be eliminated or reduced. The intensity of solar and geomagnetic activity can be 
illustrated by three indexes. The Kp index and the Dst index are used to describe the geomagnetic activity, and the 
solar radiation F10.7 index is used to describe the solar activity. Kp index and F10.7 index are obtained from the 
German Research Centre for Geosciences (GFZ, https://www.gfz-potsdam.de/en/kp-index/), and the Dst index 
data are from the World Data Center (ICSU-WDS, http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html). Figure 2 shows 
the time sequences of the Kp index, F10.7 index, and Dst index within 30 days from 10 days before the typhoon 
generation date. During the study periods, the Kp index exceeds 4 nT only in a few periods, the F10.7 index is 
between 60 and 100 sfu, and the Dst index is greater than −30 nT, so the solar and geomagnetic activities are 
considered to be calm (Liu & Jin, 2019).

2.2.  Methods

It is assumed that all free electrons are concentrated on a thin spherical shell at a certain altitude. The intersection 
of the satellite to the GPS receiver line is defined as the ionosphere pierce point (IPP). The latitude and longi-
tude of IPP can be obtained based on the position of the satellite and the measurement station. In this method, 
the variations of TEC are assumed to occur on the IPP. Slant TEC (STEC) can be obtained from dual-frequency 
observations (Jin et al., 2014):
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where f is the carrier phase frequency, f1 = 1,575.42 MHz and f2 = 1,227.60 MHz, L and P are the carrier phase 
and pseudorange observations, respectively, b and d are the instrumental errors of the carrier phase and pseudor-
ange, and ε are the residuals. In a continuous observation, N1 and N2 are fixed values, while ambiguity, differen-
tial code biases, and noises are estimated as constant (Jin et al., 2017). Then the constant terms are removed by 
low-frequency filtering and the precise TEC can be obtained.

Figure 2.  Time series of Kp index (a), F10.7 index (b), and Dst index (c).

https://www.gfz-potsdam.de/en/kp-index/
http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html
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The slant TEC is converted into vertical TEC by:

VTEC = STEC ∗ cos

(

arcsin

(

𝑅𝑅 sin 𝑧𝑧

𝑅𝑅 +𝐻𝐻

))

� (2)

where R is the radius of the Earth (6,371 km), and H is the assumed height 
of the ionospheric spherical shell, which is set as the mean 350 km of the F 
region peak height (Song et al., 2019), and z is the satellite elevation angle.

Before estimating TEC from dual-frequency observations, the effect of cycle 
slips needs to be eliminated. In this paper, the detection and repair of the 
cycle slips are performed by the second-order, time-difference phase iono-
spheric residual method (Cai et al., 2013). The typhoon-induced ionospheric 
disturbance can be obtained from the relative changes of TEC. To extract 
significant ionospheric disturbance, the fourth-order Butterworth filter (Jin 
et al., 2014) was used to remove the effects caused by IPPs motion and iono-
spheric background variations from the TEC. For example, we detect signals 
smaller than 16.7 mHz based on Nyquist's theorem GPS observations with 
a sampling interval of 30  s. Also, 1 mHz is chosen as the cutoff value to 
eliminate the variation of the background TEC. The filtering results show 
that the amplitude of the extracted ionospheric disturbances is most obvious 
when the cutoff frequency is 1–3 mHz, which is related to the gravity wave 
frequency range.

3.  Results and Analysis
The tracks of IPPs are similar for the same satellite observed by different 
stations in the same period, so the result of one station can show the move-
ments of IPPs (Figure 3).

During the study period, obvious ionospheric disturbances are observed following the multiple typhoons from 
GPS TEC. The error of TEC is estimated with about 0.1 TECU. Figure 4 shows TEC disturbances at several 
stations during the typhoon from the filtered TECs in the range of 0.1–0.2 TECU, while the characteristics of 
the disturbances were different. During Typhoon Lekima, the disturbances were close to 0.2 TECU observed by 
station CISH and GS07 for satellite PRN20, while about 0.1 TECU is observed by station DOSE and FUNY for 
satellite PRN24. To show the significance of TEC disturbances, we have calculated the root mean square of the 
TEC disturbance time series, whose sigma is about 0.02 TECU (e.g., 2019 Lekima Typhoon), and most distur-
bances are over 3 times of sigma, which is significant at 99.7% confidence level.

3.1.  Propagation Direction and Velocity of Ionospheric Disturbances

Figure  5 shows the distribution of ionospheric punctures of the four typhoons with multiple satellites. In 
Figure 5a, during the period from 10:00 UT to 12:00 UT on 7 July 2016, Nepartak was a super typhoon. The 
ionospheric punctures of PRN02 and PRN06 were located northwest of the typhoon eye, and obvious ionospheric 
disturbances were observed, while the disturbances detected by the IPPs of PRN17 and PRN09 during this period 
were not obvious. The disturbances observed by several satellites are mainly in the western and northwestern 
directions of the typhoon eye. Figure 5b shows the ionospheric disturbance of Typhoon Lekima at 13:05 UT on 
8 August 2019. During the period from 12:00 UT to 14:00 UT, the disturbances detected by PRN20 and PRN24 
were mainly distributed in the western direction of the typhoon center, while no significant disturbances were 
observed in the southern and northern directions of the typhoon eye. Figure 5c shows Typhoon Mitag at 02:53 UT 
on 30 September 2019. During the period from 02:00 UT to 04:00 UT, ionospheric disturbances were detected 
by PRN02, PRN05, and PRN06, which are located northwest of the typhoon eye. In Figure 5d, the ionospheric 
disturbances of Typhoon Hagupit were detected at PRN25 in the east direction and PRN31 in the west direction of 
the typhoon eye at 15:50 UT on 3 August 2020. These results show that the observations from different satellites 
are inconsistent.

Figure 3.  Ionosphere pierce point tracks of typhoon (a) Nepartak, (b) Lekima, 
(c) Mitag, and (d) Hagupit. The red cross shows the location of the station, 
and the blue pentagram is the location of the typhoon eye in the middle of 
the selected period. Pseudo Random Noise means the serial number of the 
satellite. Two hours were chosen during each typhoon around the maximal 
intensity and wind speed.
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The direction of the disturbance propagation can be detected by the variation of the disturbance at IPPs at differ-
ent times. The source location of the ionospheric disturbance can be conjectured using observations from multi-
ple satellites, such as the western and northwestern directions observed by the satellites PRN02 and PRN06 
(Figure 5a), suggesting that the source of the ionospheric disturbance of Typhoon Nepartak is located near the 
typhoon eye. During the selected period, the ionospheric disturbance sources of Typhoon Nepartak and Mitag 
were located close to the typhoon center, while that for Typhoon Lekima and Hagupit were located roughly 
northwest of the typhoon eye. The difference in the source locations may be related to the track of the typhoon 
during this period.

The distribution of the extremum of the disturbances observed by several satellites during the study period is 
shown in Figure  6. In terms of the results, the satellite elevation angle at the IPP about 600  km away from 
the typhoon center, where significant disturbances were observed for the four typhoons, is concentrated around 
45°–60°. This suggests that the satellite elevation angle may affect the observation of disturbances. Higher inten-
sity typhoons seem to less likely observe large disturbances in areas close to the typhoon eye.

The propagation velocity of the ionospheric disturbance can be estimated from the distance between the IPP 
and the typhoon eye and the filtered ionospheric disturbance. The horizontal propagation velocities of the iono-
spheric disturbance triggered by Typhoon Nepartak, Lekima, Mitag, and Hagupit are about 191, 194, 144, and 
127 m/s, respectively (Figure 7). The propagation velocities of the ionospheric disturbances triggered by these 
four typhoons are in the range of the signal propagation velocity when the gravity waves are coupled with the 
ionosphere. Using the Short Time Fourier Transform to transform the filtered TEC from the time domain to the 
frequency domain, the central frequency of the disturbance can be obtained at about 1.6 mHz, which is consistent 
with the signal frequency of gravity waves coupled with the ionosphere (Jin et al., 2015), suggesting that these 
disturbances are triggered by typhoon-excited gravity waves.

3.2.  Relationship Between Disturbance Amplitude and Typhoon Strength

Several studies (Chen et al., 2020; Wen & Jin, 2020) have shown that the magnitude of ionospheric disturbances 
was related to the distance between the IPP and the typhoon eye, but only a small number of stations have been 
used for comparison. Figure 8 shows the distribution of the magnitude and distance of the disturbances from 

Figure 4.  Total Electron Content variations at different stations following the Nepartak, Lekima, Mitag, and Hagupit 
typhoons.
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Figure 5.  IPPs distribution of (a) Nepartak; (b) Lekima; (c) Mitag; and (d) Hagupit. The blue pentagram represents the 
location of the typhoon eye. The blue lines mean the typhoon tracks.

Figure 6.  The magnitude of the ionospheric disturbances.
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multiple stations during four typhoons. The color dots show the relationship between the extreme magnitude of 
the disturbance and the distance between the IPP and the typhoon center during the study period.

The statistical results show that the mean value of the disturbance is 0.1180 TECU for PRN02 and 0.1383 TECU 
for PRN06 during Typhoon Nepartak, and the distance between the IPP of PRN02 and the typhoon eye is farther 
than that of PRN06. This indicates that the disturbance is greater at a more distant location from the typhoon 
eye. This is also confirmed by Typhoon Lekima shown in Figure 8b, where the magnitude of the disturbance is 
0.1435 TECU for PRN20 and 0.1331 TECU for the closer PRN24. The disturbance magnitude is 0.1228 TECU 
for PRN05 and 0.1156 TECU for PRN06, while the number of stations during Typhoon Hagupit in Figure 8d is 
small, and the disturbance magnitudes of PRN26 and PRN31 are 0.1321 TECU and 0.1007 TECU, respectively.

To reduce the effect of the distance, the ionospheric disturbances observed between 500 and 700 km from the 
typhoon eye were selected to analyze the relationship between disturbance magnitude and typhoon intensity. 
The mean values of the ionospheric disturbance during the study period are linearly fitted to the maximum wind 
speeds of the four typhoons. The results show that the mean values of the disturbance triggered by Typhoon 
Nepartak, Lekima, Mitag, and Hagupit are 0.1676 TECU, 0.1495 TECU, 0.1338 TECU, and 0.1755 TECU, 
respectively. Combined with the data of Typhoon Hato and typhoon Meranti, the fitting results of the six-typhoon 
ionospheric disturbances are shown in Figure 9, which shows a good linear relationship between the ionospheric 
disturbance magnitude and the typhoon intensity.

The results show a good correlation between the magnitude of ionospheric disturbances and the typhoon wind 
speed. The higher the typhoon intensity is, the larger the disturbance magnitude is. However, the number of 
stations in this study was around 400 for the typhoons Mitag, Lekima, Nepartak, and Meranti, while about 140 

Figure 7.  The variation of the disturbance size and distance with the time for (a) Nepartak; (b) Lekima; (c) Mitag; and (d) 
Hagupit. The black dashed line is used to fit the disturbance propagation speed.
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for typhoons Hagupit and Hato. A more accurate relationship should be further studied with more typhoons by 
the same stations.

3.3.  Distribution of Positive and Negative Disturbances

From the results, it is clear that there are not only differences in the magnitude of the ionospheric disturbances 
triggered by the typhoon, but also inconsistencies between the positive and negative anomalies of the distur-
bances. As can be seen from Figure 10a, the disturbances observed at stations PRI1, DOSE, DOJI, and DNAN 
through PRN31 are negative first, that is, inverted-N type. While the disturbances observed by the stations STA1 
and PAO2 through PRN25, the first two stations show positive disturbances first and then negative disturbances, 
that is, N-type, but LIY2 and CHUA are inverted N type. As shown in Figures 10b and 10c, PRN31, which is 
located in the west direction of the typhoon center, has a more obvious positive and negative disturbance distri-
bution when compared with PRN25 in the east direction.

Figure 11 shows the distribution of positive and negative ionospheric disturbances of four typhoons. The number 
of IPPs with first positive disturbances for these four typhoons is 416, 303, 137, and 164, while the number of 
IPPs with first negative disturbances is 462, 426, 296, and 135. It is not significantly different in number, but the 

results appear that the positive or negative disturbances are more concen-
trated in some areas.

4.  Discussion
Ionospheric disturbances triggered by typhoon-excited gravity waves were 
observed during the approaching landfall of several typhoons. Through 
the analysis of the characteristics of ionospheric disturbances triggered by 
several typhoons, it is found that the ionospheric disturbance characteristics 
are closely related to the typhoon path, intensity, and other factors. However, 
for finding the pattern between typhoons and ionospheric disturbances, there 
are still several problems to be solved as follows.

The mechanism of typhoon-induced disturbances is still unclear, for example, 
the sources of the disturbances observed during the study period for Typhoon 

Figure 8.  The relationship between the extreme magnitude of the disturbance and the distance between the ionosphere pierce 
point and the typhoon eye during the study period for (a) Nepartak; (b) Lekima; (c) Mitag; and (d) Hagupit.

Figure 9.  The relationship between disturbance magnitude and typhoon 
intensity.
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Nepartak and Mitag in Figure  5 are located near the typhoon eye, while 
the sources of Typhoon Lekima and Hagupit are located northwest of the 
typhoon eye. This may be related to the typhoon's path, as Typhoon Nepartak 
and Mitag are located in the east of Taiwan and moving toward Taiwan, while 
Typhoon Lekima and Hagupit are located in the north of Taiwan and moving 
toward the mainland. According to Kong et al. (2017), this was because the 
typhoon covered the mountainous area with strong winds before landfall, 
and  the violently undulating topography allowed gravity waves to propagate 
into the ionosphere. But this cannot explain the observation that the distur-
bance source is located near the typhoon eye in this study.

On the other hand, Vadas and Fritts (2009) showed that gravity waves prop-
agated upward as concentric rings in the isothermal, windless middle and 
lower atmosphere, and later Yue et al. (2009) observed near-perfect concen-
tric rings triggered by gravity waves at 87 km altitude using the all-sky OH 
imager. The IPP height was set to 350 km, and the actually observed distur-
bances located in different directions at the typhoon center did not show a 
ring shape, which were inconsistent with the results of the previous studies 
(Vadas & Fritts, 2009; Yue et al., 2009). As is shown in Figure 5, significant 
disturbances are not observed in all directions of the typhoon center. In this 
regard, this was the result of gravity waves reaching the ionosphere after 
breaking and absorption in the stratosphere and mesosphere, according to 
Chou et al. (2017). Kong et al. (2017) also suggested that gravity waves would 
not be able to propagate freely due to the breaking of gravity waves, absorp-
tion in the critical layer, and reflection in the stratosphere. Zhao et al. (2020) 
speculated that this could be caused by changes in the background wind and 
the influence of the magnetic field, due to the propagation aeolotropy of 

Figure 10.  (a) The Total Electron Content time series of PRN25 and PRN31 at different stations during Typhoon Hagupit. 
The red rectangle shows the observed ionospheric disturbances; (b and c) are TEC disturbances at ionosphere pierce points 
with different times.

Figure 11.  The distribution of positive and negative ionospheric disturbances 
for (a) Nepartak; (b) Lekima; (c) Mitag; and (d) Hagupit. The red IPPs are 
positively observed first, the blue ionosphere pierce points are negatively 
observed first, and the black pentagrams are the locations of the typhoon eyes 
at this time.
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the ionospheric disturbances regarding the magnetic inclination (Heki & Ping, 2005; Song et  al.,  2017), and 
Freeshah et al. (2021) proposed the effect that the meridional wind may affect the coupling of the atmosphere 
and ionosphere.

The observation of disturbances is influenced by a number of factors. For example, the satellite elevation angle 
also affects the observation of disturbances (Figure 6), since the TEC are most sensitive to the perpendicular 
disturbances along the line of sight (Jin, 2018). The disturbances may be more easily observed at some elevation 
angles due to the slant propagation up to the ionosphere of the gravity waves (Li et al., 2018). When the wave 
path and satellite line of sight are parallel to each other, the integration of wavefronts cancels the wave phases and 
thus results in minimal amplitudes (Bagiya et al., 2017). The amplitude of disturbances also shows differences 
under different methods (Zheng et al., 2022), the variations in the electron density are 3%–19%, while the distur-
bances in this study are less than 1%. This difference is most likely due to the “smoothing out” (Xu et al., 2019). 
If the vertical wavelengths of disturbance are smaller than the F layer thickness, the amplitudes are expected to 
be significantly reduced in this study. The filtering, the distance between IPP and typhoon eye, the disturbance 
period, etc., also affect the amplitude of disturbances. This is related to the dissipation of AGWs in propagation 
(Chen et al., 2020; Vadas, 2007). The propagation of gravity waves in the atmosphere and the coupling process 
in the ionosphere remain unclear due to the continuous decay of the atmospheric density, which propagates in a 
nonlinear manner. The trajectories of the ionospheric punctures during the study period are shown in Figure 3, 
and the ionospheric punctures only cover part of the area near the typhoon center as shown in Figure 5. More 
simultaneous observations of the satellites can obtain more comprehensive ionospheric punctures with covering 
all directions of the typhoon center and thus obtain more detailed disturbance characteristics.

Although the relationship between the magnitude of ionospheric disturbances and the typhoon intensity is found 
for six typhoons, more case studies are needed under the same conditions, such as the same filtering methods, 
satellite elevations, and coverages. The clear positive and negative ionospheric perturbations are observed in 
different directions of the typhoon eye, which needs to further study the possible reasons.

5.  Conclusions
In this paper, the ionospheric disturbances caused by four typhoons are analyzed and investigated by using 
GPS observations at about 400 stations from the dense continuous GPS observation network in Taiwan with a 
sampling interval of 30 s. The ionospheric disturbances following four typhoons are extracted from TEC using a 
fourth-order Butterworth filter. The main results are summarized as.

1.	 �Significant ionospheric disturbances were observed from GPS-derived TEC data following 2016 Nepartak, 
2019 Lekima, 2019 Mitag, and 2020 Hagupit typhoons.

2.	 �The mean ionospheric disturbance amplitudes are 0.1676 and 0.1495 TECU for the super typhoon Nepartak 
and Lekima, and 0.1338, and 0.1755 TECU for the typhoon Mitag and Hagupit, which are correlated to the 
intensity and maximum wind speed of the typhoon. The higher the intensity of the typhoon is, the greater the 
magnitude of the ionospheric disturbance is.

3.	 �The positive and negative ionospheric disturbances are distributed in different directions of the typhoon eyes. 
During typhoon Hagupit, most negative disturbances were observed first at the ionospheric penetration point 
of PRN31, which is located in the western direction of the typhoon eye. More positive disturbances were 
observed first at PRN25, which is located in the eastern direction of the typhoon eye.

Data Availability Statement
The typhoon data used in the study are available at National Meteorological Centre (NMC, http://typhoon.nmc.cn/
web.html). The GPS data used for TEC extraction in the study are from Central Weather Bureau (CWB), Taiwan. 
Kp index and F10.7 index in the study are obtained from the German Research Centre for Geosciences (GFZ, 
https://www.gfz-potsdam.de/en/kp-index/), and the Dst index data from the World Data Center (ICSU-WDS, 
http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html).
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