Identification of Drought Events in Major Basins of Africa from GRACE Total Water Storage and Modeled Products

Ayman M. Elameen, Shuanggen Jin, and Daniel Olago

Abstract
Terrestrial water storage (TWS) plays a vital role in climatological and hydrological processes. Most of the developed drought indices from the Gravity Recovery and Climate Experiment (GRACE) over Africa neglected the influencing roles of individual water storage components in calculating the drought index and thus may either underestimate or overestimate drought characteristics. In this paper, we proposed a Weighted Water Storage Deficit Index for drought assessment over the major river basins in Africa (i.e., Nile, Congo, Niger, Zambezi, and Orange) with accounting for the contribution of each TWS component on the drought signal. We coupled the GRACE data and WaterGAP Global Hydrology Model through utilizing the component contribution ratio as the weight. The results showed that water storage components demonstrated distinctly different contributions to TWS variability and thus drought signal response in onset and duration. The most severe droughts over the Nile, Congo, Niger, Zambezi, and Orange occurred in 2006, 2012, 2006, 2006, and 2003, respectively. The most prolonged drought of 84 months was observed over the Niger basin. This study suggests that considering the weight of individual components in the drought index provides more reasonable and realistic drought estimates over large basins in Africa from GRACE.

Introduction
Droughts have increased in frequency and severity due to climate change throughout the world’s river basins in recent decades (Forootan et al. 2019). According to the sixth assessment report of the International Panel for Climate Change (IPCC), global temperatures have risen by ~1°C since industrialization, which may further amplify by 1.5°C between 2030 and 2050 as a result of human activities (IPCC 2018). As the population grows and water demand increases, droughts are triggered and aggravated by anthropogenic activities such as deforestation and the construction of dams (Schlosser et al. 2014; AghaKouchak 2015; Om et al. 2020; Sarfo et al. 2022). To prioritize adaptation actions in global hot spots, it is essential to characterize droughts.

Although the continent has abundant water resources with meeting its ecological and agricultural needs, climatic extremes are becoming increasingly perilous, endangering the valuable water supply and millions of lives on the continent (Masih et al. 2014; IPCC 2022). Two of the biggest drought tragedies ever documented in history occurred in the Sahel region in 2007 and the Nile basin in 1984. These droughts caused the death of approximately 750,000 people (Vicente-Serrano et al. 2012). Future projections indicate that the probability of drought occurrence will increase across the entire African continent, leading to significant regional implications (Ahmadalipour and Moradkhani 2018; IPCC 2022). Additionally, excessive water demand may lead to the overuse of freshwater resources, which might result in disputes among water users during dry spells. This may increase the risk of hydro-political tension in Africa, as the Transboundary Rivers represent 64% of the entire region’s landmass (United Nations Environment Program 2010). Monitoring the drought situation in Africa is crucial for prioritizing adaptations to avert water scarcity and disputes.

Long and uninterrupted in situ hydro-climatic observations are required for drought monitoring. Yet Africa’s land-based observation network has been deteriorating with time, having only one-eighth of the minimum density required by the World Meteorological Organization and with only 22% of stations fully meeting the Global Climate Observing System requirements (Dobardzic et al. 2019). Due to the insufficiency of in situ data records in Africa, monitoring hydrological drought in the continent’s basins has been limited (Ferreira et al. 2018). Additionally, a substantial financial and political commitment is required to record and share in situ observations, both of which are frequently missing. Remote sensing observations represent an alternative source to counter data deficiencies in many data-poor regions worldwide. Moreover, satellite-borne sensors have featured as an effective tool for tracking droughts, considering their capacity to offer regional-to-global coverage (Jiao et al. 2021).

Several remote sensing–based products have been used globally to assess and detect drought situations. Among these are Moderate Resolution Imaging Spectroradiometer (MODIS)–based evapotranspiration, soil moisture from Sentinel-1 and the Soil Moisture Active Passive radiometer, and the Normalized Difference Vegetation Index from Landsat (West et al. 2019; Mladenov et al. 2020). Although these measurements could deliver valuable information about agricultural and meteorological droughts, the task of assessing hydrological drought remains daunting (Papa et al. 2022) since they can capture only surface and shallow subsurface conditions. Also, it is problematic to evaluate droughts based only on surface measurements (e.g., precipitation and soil moisture), as the reduction of water from the deepest aquifers may continue even after the surface storage has dried up (Leblanc et al. 2009). After launching the Gravity Recovery and Climate Experiment (GRACE) satellite mission in 2002, the potential time-variable gravity measurement offered an integrated perspective for drought monitoring since it can capture vertically integrated terrestrial water storage (TWS)
changes (i.e., from the top surface water to the deepest groundwater) (Ndehedehe et al. 2018).

The unique potential of GRACE measurements offered hydrologists a new dimension to develop new GRACE-based drought indices (Hassan and Jin 2014; Jin and Zhang 2016). Therefore, numerous studies have applied GRACE-based indicators for drought analysis and monitoring. For example, Kumar et al. (2021) evaluated the drought severity over the Godavari basin using the GRACE Combined Climatologic Deviation Index. Liu et al. (2020) proposed a GRACE-based Drought Severity Index and assessed the drought variations for China’s large basins. Khorrami and Gunduz (2021) proposed an Enhanced Water Storage Deficit Index to observe drought conditions in Turkey. Wu et al. (2021) characterized the drought over southwest China using the GRACE-derived Total Storage Deficit Index. Cui et al. (2021) developed a multiscale Standardized Terrestrial Index of water storage to assess the global hydrological droughts.

A number of studies have been performed to track droughts in Africa using different drought indices. Examples of earlier investigations and the indices used by different authors are listed in Table 1. The majority of used indices either originated from a single TWS component, such as surface water (precipitation) or were created primarily to take into account the total TWS components, including surface, soil, ground, snow, and canopy water. The influence role of the individual TWS components in drought index is not taken into account in these previous studies. Each water storage component is an essential hydrological variable to comprehend drought occurrences, according to Lopez et al. (2020). Since the TWS-based drought indicator considers all components together, the primary problem is abstract. As a result, it is more reasonable to analyze these components separately since one of them (e.g., groundwater) could alleviate the drought impact. Therefore, this study aims to consider the role of individual TWS components and their relative contributions to drought index computing, which might lead to a more reasonable and realistic drought evaluations.

Answering the topic of how different water storage elements respond to drought conditions throughout Africa’s major river basins is the main goal of this study. To do this, we used the Weighted Water Storage Deficit Index (WWSDI) (Wang et al. 2020), which was developed from the GRACE WSDI but also considered the influence of the individual TWS components to provide further reliable drought assessment. We used the WWSDI to identify the critical drought characteristics (i.e., severity, intensity, and duration) over five Africa’s major river basins (Nile, Congo, Niger, Zambezi, and Orange) (see Figure 1) during the 2003–2016 period. We further compared the analysis of WWSDI against the GRACE-based Water Storage Deficit Index (WSDI) and the commonly used indicators—the self-calibrated Palmer Drought Severity Index (pcPDSI), the Standardized Precipitation Index, and the Standardized Precipitation Evapotranspiration Index—to assess its performance over the region.

Materials and Methods

Data Sets
In this section, we provide a brief introduction of the data used in this study. Table 3 provides a tentative summary.

Precipitation
The study of droughts requires a thorough grasp of precipitation. This study uses monthly precipitation of 0.25° × 0.25° from 2003 to 2016, acquired from the seventh version of the Tropical Rainfall Measurement Mission (TRMM 3B43) (Huffman et al., 2007). Numerous studies (Ferreira et al. 2018; Abdi-Elbakry and Jin 2019) have been conducted over Africa using this data set. Moreover, Awange et al. (2016) reported that TRMM was suitable for hydrometeorological applications over most parts of Africa.

Table 1. Different drought indices employed in previous studies.

<table>
<thead>
<tr>
<th>River Basin</th>
<th>Drought Indices/Data Inputs</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nile</td>
<td>GRACE TWSD, SPI, SPEI, SSI, MSDI</td>
<td>Hassan et al. (2021)</td>
</tr>
<tr>
<td>Congo</td>
<td>SPI, PRACE TWS change, MERRA TWSS change</td>
<td>Ndehedehe et al. (2019)</td>
</tr>
<tr>
<td>Niger</td>
<td>SPI, SPEI, SRI, GRACE TWS change MERRA TWSS change</td>
<td>Oguntunde et al. (2018)</td>
</tr>
<tr>
<td>Zambezi</td>
<td>GRACE WSD, SPI, TSIDI</td>
<td>Thomas et al. (2014)</td>
</tr>
<tr>
<td>Orange</td>
<td>SPI, SPEI</td>
<td>Abdou et al. (2019)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>River Basin</th>
<th>Area (10^6 km^2)</th>
<th>Length (km)</th>
<th>Climate</th>
<th>Mean P (mm)</th>
<th>Annual P (mm)</th>
<th>Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nile</td>
<td>31.8</td>
<td>6700</td>
<td>Semiarid</td>
<td>678</td>
<td>726</td>
<td></td>
</tr>
<tr>
<td>Congo</td>
<td>37.5</td>
<td>4667</td>
<td>Humid</td>
<td>705</td>
<td>737</td>
<td></td>
</tr>
<tr>
<td>Niger</td>
<td>21.8</td>
<td>4200</td>
<td>Semiarid</td>
<td>1504</td>
<td>419</td>
<td></td>
</tr>
<tr>
<td>Zambezi</td>
<td>13.8</td>
<td>2650</td>
<td>Semiarid</td>
<td>975</td>
<td>1003</td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>9.7</td>
<td>2300</td>
<td>Semiarid</td>
<td>359</td>
<td>270</td>
<td></td>
</tr>
</tbody>
</table>

Potential Evapotranspiration

The present study utilizes monthly potential evapotranspiration (PET) retrieved from the MOD16A2 sensor, publicly available worldwide at 8-day temporal resolutions and 500-m spatial resolution (Running et al. 2017). We select MODIS16A2 data sets due to their relatively lower magnitude of uncertainty and rather good performance over the region (Andam-Akorful et al. 2015; Mekonnen et al. 2022). MODIS16A2 PET data extraction was conducted using Google Earth Engine (GEE). The 8-day PET data were averagely weighted to obtain the monthly PET values for this study.

Table 2. Area, length, climate, and mean annual precipitation of river basins selected in this study.

GRACE-Derived TWS Anomalies

GRACE measurements (Jin et al. 2011; Ndehedehe et al. 2020) provide useful information for hydrological studies since they offer a quantitative assessment of monthly variations of water in lakes, rivers, reservoirs, snow, soil, and aquifers. The present study employs the sixth release of the spherical harmonics coefficient solutions processed by the Center for Space Research (CSR) at the University of Texas at Austin (Zhang et al. 2018), to derive gridded terrestrial water storage anomaly (TWSA) data over the selected river basins from 2003 to 2016 at a spatial resolution of 1°.

The coefficients were processed by being truncated at degree and order 60. They were then filtered and destriped using a 400-km-radius Gaussian filter. The leakage reduction and averaging approach (Khaki et al. 2018) were used in this study to minimize the leakage error contributions over the understudied river basins. The missing months in the
time series were filled using linear interpolation via averaging the prior and subsequent months (Yang et al. 2017).

scPDSI Gridded Data Sets
This study utilizes monthly scPDSI (Wells et al. 2004) time-series (v4.04) data sets for the period 2003–2016, with a spatial resolution of 0.5°. The data sets were collected from the Climate Research Unit (CRU) at the University of East Anglia, United Kingdom.

WaterGAP Global Hydrology Model
This study uses the WaterGAP Global Hydrology Model (WGHM) to separate the components of GRACE TWS data (i.e., surface water storage [SWS], soil moisture storage [SMS], groundwater storage [GWS], snow water equivalent [SWE], and plant canopy water storage [CWS]). Given that the SWS and GWS are taken into account, the WaterGAP model has an advantage over the Global Land Data Assimilation System (GLDAS) (Huang et al. 2019). Moreover, climate fluctuations and anthropogenic influences on water availability are also considered (Wang et al. 2020). The recent model version (WaterGAP 2.2d) at a resolution of 0.5° is used in this study (Müller Schmied et al. 2021). The data are available from January 2000 to December 2016.

Methodology

Processing Standardized Drought Indices
Standardized indices are widely used to quantify droughts worldwide. We employ SPI, SPEI, and scPDSI to assess the effectiveness of WWSDI in characterizing drought events over the chosen basins for this study. SPI is a meteorological drought index that is based only on precipitation (Sulteh Kumar et al. 2021). To compute SPI, the monthly TRMM precipitation is normalized by utilizing an equal probability function. SPEI is an expansion of SPI, as it includes the influence of evapotranspiration on drought under changing environments. SPEI is computed by subtracting precipitation from potential evapotranspiration using climatic water balance. Hence, TRMM precipitation and MODIS PET products were employed to calculate SPEI. It required long-term observations to reliably calculate SPI and SPEI; however, many studies, such as Sun et al. (2018), have successfully used the available GRACE term

Table 3. Data sets used in this study.

<table>
<thead>
<tr>
<th>Categories</th>
<th>Data/Model</th>
<th>Time Span</th>
<th>Spatial Resolution</th>
<th>Data Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRACE TWS</td>
<td>CSR-SH (RL06)</td>
<td>2003–2016</td>
<td>1°×1°</td>
<td>http://www2.csr.utexas.edu/grace/</td>
</tr>
<tr>
<td>Precipitation</td>
<td>TRMM</td>
<td>2003–2016</td>
<td>0.25°×0.25°</td>
<td>https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7</td>
</tr>
<tr>
<td>Surface water</td>
<td>WGHM</td>
<td>2003–2016</td>
<td>0.5°×0.5°</td>
<td>https://doi.pangaea.de/10.1594/PANGAEA.918447</td>
</tr>
<tr>
<td>Soil moisture</td>
<td>WGHM</td>
<td>2003–2016</td>
<td>0.5°×0.5°</td>
<td>https://doi.pangaea.de/10.1594/PANGAEA.918447</td>
</tr>
<tr>
<td>Snow water equivalent</td>
<td>WGHM</td>
<td>2003–2016</td>
<td>0.5°×0.5°</td>
<td>https://doi.pangaea.de/10.1594/PANGAEA.918447</td>
</tr>
<tr>
<td>Canopy water</td>
<td>WGHM</td>
<td>2003–2016</td>
<td>0.5°×0.5°</td>
<td>https://doi.pangaea.de/10.1594/PANGAEA.918447</td>
</tr>
<tr>
<td>scPDSI</td>
<td>CRU</td>
<td>2003–2016</td>
<td>0.5°×0.5°</td>
<td>https://crudata.uea.ac.uk/cru/data/drought/</td>
</tr>
</tbody>
</table>

CRU = Climate Research Unit; CSR = Center for Space Research; GRACE TWS = Gravity Recovery and Climate Experiment terrestrial water storage; scPDSI = self-calibrated Palmer Drought Severity Index; TRMM = Tropical Rainfall Measurement Mission; WGHM = WaterGAP Global Hydrology Model.
to characterize drought phenomena. Both indicators can be obtained at different timescales (1, 3, 6, 9, 12, and 24 months). However, each timescale reflects a distinct condition. For example, 1 month could indicate meteorological types of droughts, 3 months could reflect the soil moisture conditions, 6 months may indicate anomalies in land water storage, and 9 months could depict the agricultural droughts well. Hence, to provide a solid validation for WWSDI performance, the 6-month timescale was employed since it can effectively demonstrate the TWS deficit that was monitored by WWSDI (Sun et al. 2018; Wang et al. 2020). Another widely used meteorological drought index is the scPDSI, which is developed based on the Palmer Drought Severity Index (PDSI) using a physical water balance model. The scPDSI timescale is fixed unlike the two indices previously described.

Processing Components Estimation

As mentioned previously, TWSA is composed of the following:

\[\text{TWSA} = \text{GWSA} + \text{SMSA} + \text{SWEA} + \text{SWSA} + \text{CWSA} \]

(1)

In this study, TWSA is estimated from Grace, whereas soil moisture storage anomalies (SMSA), snow water equivalent anomalies (SWEA), surface water storage anomalies (SWSA), and canopy water storage anomalies (CWSA) are the anomalies of SMS, SWE, SWS, and CWS, deducted from the WGHM. Groundwater storage anomalies (GWSA) are estimated via subtracting TWSA from the WGHM-derived components in Equation 1. Note that the SWEA and CWSA have minimal contribution to TWSA over African basins. Thus, they are assumed to be negligible and not considered in groundwater storage anomalies computation, as indicated in Equation 1 (further description provided in “Results and Analysis”). SMSA and SWSA are expanded into the spherical harmonic coefficients, truncated to 60°, ordered, and filtered by Gaussian filter.

Component Contribution Ratio

We utilized the component contribution ratio (CCR) to determine the mean percentage contribution of a single water storage component to the temporal variability of the total TWS (Huang et al. 2019). CCR is calculated as the ratio of the mean absolute deviation (MAD) of a storage component to the total TWS variability (TV), as expressed by (Zhang et al. 2019)

\[\text{CCR}_x = \frac{\text{MAD}_x}{\text{TV}} \]

(2)

where \(\text{MAD}_x = \frac{1}{N} \sum_{i=1}^{N} |S_i - \bar{S}| \), \(S \) denotes the single storage components, and TV is the total variability, calculated as summation of all components \(TV = \sum_{i=1}^{N} \text{MAD}_i \).

Processing the WWSDI

In this study, in order to depict drought in the five large Africa’s basins, we adopted the WWSDI developed by Wang et al. (2020). WWSD is based on WSD, which represents the difference between TWSA time series and the monthly means of TWSA values (Thomas et al. 2014) and is computed as

\[\text{WSD}_{v_t} = \text{TWSA}_{v_t} - \bar{\text{TWSA}} \]

(3)

where \(\text{TWSA}_{v_t} \) is the value of TWSA time series for the \(v \)th month of the \(t \)th year and \(\bar{\text{TWSA}} \) is the mean value of the \(v \)th month of TWSA during the study period. A negative deviation represents storage deficits. Furthermore, three continuous negative months or longer is considered a drought event (Thomas et al. 2014). In order to make comparisons against SPI, SPEI, and scPDSI in this study, the WSD is normalized to WSD by the zero-mean normalization method, based on the expression

\[\text{WSDI} = \frac{\text{WSD} - \mu}{\sigma} \]

(4)

where \(\sigma \) and \(\mu \) indicate standard deviations and the mean of the WSD time series, respectively. In order to construct WWSD, we incorporated different TWS components (i.e., GWS, SWS, and SMS) to the drought index by weighting these components through their CCR using Equation 2. We subsequently calculated the water deficit for each component (i.e., groundwater storage deficit [GWSD], surface water storage deficit [SWSD], and soil moisture storage deficit [SMSD]) like the WSD. Thereafter, WWSD was generated by combining these water components’ deficits after multiplying them by their respective weights,

\[\text{WWSD} = \omega_1 \text{GWSD} + \omega_2 \text{SWSD} + \omega_3 \text{SMSD} \]

(5)

where \(\omega_i \) (\(i = 1, 2, 3 \)) represent the derived weight from Equation 2. Finally, WWSDI is achieved by normalizing WWSD, as shown in Equation 4.

Results and Analysis

Distribution of Precipitation, Terrestrial Water Storage, and Its Components

The monthly averaged TWSA variation and its individual components other than precipitation over 14 years (from January 2003 to December 2016) are illustrated in Figure 2. A clear seasonal cycle as well as interannual variation in the amount of TWSA, GWSA, SMSA, SWSA, and precipitation is visible for all the basins. CWSA and SWEA variations were observed to be minimal over all the basins. Thus, the latter two components are not considered in the following analysis.
A comparison of precipitation and the TWSA seasonal cycle is shown in Table 4. It can be observed that both the Nile and the Niger basins followed broadly similar seasonal cycle variation since they have similar climatological/hydrological characteristics. Also, the Zambezi and Orange basins revealed similar pattern of the rainiest and driest months in terms of precipitation and TWSA.

It is clear from Figure 2 that a time lag exists between the peak of precipitation and TWSA as well as between the individual components of TWSA. Herein, the lag between TWSA, GWSA, SMSA, SWSA, and precipitation is further quantified via calculating the Pearson correlation coefficients among these storage components as well as the respective perception for different time lags (i.e., 0–12 months). Subsequently, the value of the maximum correlation coefficient between each two variables and the lags (numbers in brackets) corresponding to those maximum values are identified and shown in Figure 3.

The results from Figure 3 suggest a time lag of 0 to 2 months between TWS anomalies derived from GRACE and precipitation over the five basins. In general, the change in TWS was clearly noticeable in the season following the precipitation change over all basins (see Table 4). This result is consistent with the findings of Abd-Elbaky and Jin (2019) and Zhang et al. (2019). Concerning the lags between individual

<table>
<thead>
<tr>
<th>River Basins</th>
<th>Wet Months</th>
<th>Dry Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nile</td>
<td>Jun–Aug (101.5)</td>
<td>Sep–Nov (48.3)</td>
</tr>
<tr>
<td>Congo</td>
<td>Sep–Nov (154.4)</td>
<td>Dec–Feb (32.8)</td>
</tr>
<tr>
<td>Niger</td>
<td>Jun–Aug (136)</td>
<td>Sep–Nov (75.7)</td>
</tr>
<tr>
<td>Zambezi</td>
<td>Dec–Feb (204.6)</td>
<td>Mar–May (49.7)</td>
</tr>
<tr>
<td>Orange</td>
<td>Dec–Feb (60.7)</td>
<td>Mar–May (6.45)</td>
</tr>
</tbody>
</table>

Table 4. Wet and dry seasons of precipitation and terrestrial water storage anomalies (TWSA) over large African river basins.

Figure 3. Maximum Pearson correlation coefficients between monthly terrestrial water storage anomalies (TWSA), the individual components of TWSA, and precipitation in the (a) Nile, (b) Congo, (c) Niger, (d) Zambezi, and (e) Orange river basins. The numbers in brackets represent the corresponding lag months.
components of the TWSA and precipitation, the largest correlation coefficients were observed corresponding to 2 to 3 months of lag in terms of GWSA and 0 to 1 month in terms of SWSA and SMSA, respectively. The lags between GWSA, SMSA, and SWSA against precipitation can be arranged as GWSA > SMSA ≥ SWSA. These findings further supported the assertion of precipitation as a key driver of water storage, with immense control over the hydrological cycle in these basins.

In each basin, the lags between TWSA, individual components of TWSA, and precipitation are attributed mainly to each basin’s peculiar geographical and climatological characteristics.

Figure 4 illustrates the calculated component contribution ratio (CCR) of GWSA, SMSA, and SWSA for the five major rivers in Africa. The results revealed that the highest contribution to total water storage variability over the five river basins was induced mainly by the GWS anomaly accounting (56%, 61%, 47%, 64%, and 78%), followed by SMSA (34%, 32%, 25%, 26%, and 18%) and SWSA (10%, 21%, 14%, 10%, and 4%) for the Nile, Congo, Niger, Zambezi, and Orange basins, respectively. Furthermore, SMSA and SWSA peaks and troughs are not necessarily coincident with the peaks and troughs of TWSA, as shown in Figures 2 and 3. This difference is attributed mainly to the different time lags between precipitation falling and the response of the single TWS components against the precipitation. These findings denote that different TWS components exhibit different amplitude, phase, and contributions to TWS change. This further confirms that different components contribute distinctly to TWS changes over the understudied basins.

Deficit of Terrestrial Water Components in the Major Basins of Africa

Figures 5 and 6 demonstrate the time series of the derived terrestrial water components storage deficit (WCSD) (including GWSD, SMSD, and SWSD) and terrestrial water storage deficit indices (WCSDI) from January 2003 to December 2016 for the five major African basins. According to Figure 5, the overall correlation between GWSD and WSD for the five basins ranged from 0.91 to 0.99. SMSD and SWSD followed different patterns from that of GWSD during different periods in the time series. For example, over the Congo basin (Figure 5b), from January 2009 to January 2013, GWSD recorded a declining trend of ~1.03 mm, whereas SMSD and SWSD exhibited rising trends of 0.3 mm and 0.15 mm, respectively.

To better understand the drought dynamics over the considered basins in this study, WCSD was also utilized as an indicator to identify drought events based on 3 months or more of continuous negative deficits (from January 2003 to December 2016), as shown in Figure 7. The results clearly show that different WCSD indicators detected varied onset, duration, and drought occurrences during the study period. For example, over the Nile basin (Figure 7a), groundwater storage deficit (GWSD) exhibited six drought events, whereas SMSD and SWSD exhibited 12 and 7 events, respectively, between January 2003 and December 2016. Moreover, a noticeable prolonged drought state in terms of groundwater storage (GWSD) was observed from January 2003 to February 2007, January 2003 to December 2009, January 2003 to July 2008, and January 2003 to January 2006 over the Nile, Niger, Zambezi, and Orange basins, respectively, separated by nearly one wetting month. The drought trends depicted from (Figure 7a, 7c, 7d, and 7e) are consistent with GWSD (Figure 6a, 6c, 6d, and 6e). The late response of GWSD to recharge from SWS and/or the increased groundwater withdrawal can support this finding. Furthermore, the Niger basin had the most prolonged GWSD drought state among all the basins recording 7 years. Previous work by Ferreira et al. (2018) on a water storage (TWS) drought signal over West Africa (including the Niger basin) found a longer drier period between 2003 and 2008. These findings are consistent with the results presented in this study. According to the analysis of the 2003–2008 period presented in this article, the water storage (TWS) based drought trend is related to groundwater storage, where most of the TWS (i.e., 61%) in the Niger basin is induced mainly by GWSD (Figures 4 and 7c). Ferreira et al. (2018) reported that
the rainfall increasing trend between 2003 and 2008 over West Africa is associated with a drought period. They attributed this to the unsustainable influencing of rainfall recovery to the water-storage increase across West Africa, in the early 2000s. Consequently, the occurrence of the long GWS drought state in the Niger basin may be attributed to the minimal or late influences of surface water on the groundwater storage in the early 2000s.

The results also demonstrate that SWSD and SWSDI over the Orange basin (Figures 6e and 7e) exhibited a long drier period from March 2013 to December 2016 except for February and June 2013. This finding is in line with an early study conducted over the South African drying signal (Munday and Washington 2019). The latter linked the decline in precipitation with local surface temperature change since increased subsidence is linked to clearer skies and higher net solar radiation. Also, the reduction in precipitation magnitude is correlated to the changing patterns of tropical sea surface temperatures. Furthermore, the exceeding demand for surface water may cause the surface water shortage, where the water of the Orange basin is heavily utilized, and most of the riparian states rely on the Orange basin’s water resources for commercial crop irrigation; in addition, 29 dams are operated over the river (Mguba and Majoi 2020), which may cause large water abstractions.

The results acquired from WCSD and WCSDI analysis concluded that different water components responded differently to drought events over the basins in this study. Thus, these parameters can be considered for a more realistic and reliable drought evaluation over the major African basins.

Figure 6. Time series of water storage deficit index (WSDI) and water components storage deficit index (WCSDI) in the (a) Nile, (b) Congo, (c) Niger, (d) Zambezi, and (e) Orange river basins.

Figure 7. Temporal extents of identified drought events based on water storage deficit (WSD), water components storage deficit (WCSD), and weighted water storage deficit (WWSD) in the (a) Nile, (b) Congo, (c) Niger, (d) Zambezi, and (e) Orange river basins. The yellow values denote wet month, while the dark blue values represent drought month.
Evaluation of WWSD Relative to WSD
As previously shown, different water components play different roles in response to drought events over the basins in the study. The findings of this article have implications for how to provide a more realistic drought evaluation considering the individual TWS components and their relative contributions to the drought index. Therefore, to further demonstrate the rationality behind utilizing WWSD in this study, the performance of WWSD and WSD in terms of drought events identification has been assessed as shown in Figure 7. Despite both indicators appearing to behave similarly, the data show some discrepancies in the observed onset and drought duration between WWSD and WSD. For example, in the Nile basin (Figure 7a), WWSD recorded one drought between April 2004 and October 2006, whereas WSD monitored the drought from March 2004 to November 2006. In the Congo basin (Figure 7b), WSD detected a drought event from November 2008 to January 2009; however, WWSD failed to identify this event. This result indicates that WWSD has varied sensitivity to drought events compared to WSD. These discrepancies, however, are explained by the weight given to a single TWS component in the WWSD. In conclusion, these findings suggest that accounting the influencing roles of these components storage in drought index are expected to provide more accurate drought characteristics estimation over major basins in Africa.

Figure 8. Scatterplots of correlation between the Weighted Water Storage Deficit Index (WWSDI) and Water Storage Deficit Index (WSDI), the Standardized Precipitation Index (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI), and the self-calibrated Palmer Drought Severity Index (scPDSI) for the (a) Nile, (b) Congo, (c) Niger, (d) the Zambezi, and (e) Orange river basins. An asterisk indicates that the correlation is not significant.
In this study, the efficacy of WWSDI was identified by making comparisons with WSDI and other commonly used drought indices (i.e., SPI, SPEI, and scPDSI). The scatterplots in Figure 8 represent the correlation between WWSDI and WSDI, SPI, SPEI, and scPDSI over the five African river basins.

High positive correlations between WWSDI and WSDI are observed over the Nile, Congo, Niger, Zambezi, and Orange basins estimated at 0.98, 0.95, 0.98, 0.99, and 0.98, respectively. This strong relation between WWSDI and WSDI is due to their high sensitivity to GRACE TWS and the inclusion of TWS in their calculation procedures. However, the differences in correlation are attributed to the consideration of the weight of a single TWS component in WWSDI. WWSDI is based on a single variable (GRACE TWSA); on the other hand, WWSDI is based on combining the TWS estimation from GRACE and WHM using the CCR of individual TWS compartments as the weight. However, despite the fact that WWSDI and WSDI operate quite similarly, there is a distinction, as discussed in the previous section.

When comparing the WWSDI with other commonly used drought indices, we discovered that WWSDI is significantly correlated with SPI at a 0.05 significance level. The highest positive correlation (r = 0.69) between the two indices was observed in the Orange basin, while the lowest was detected in the Congo basin. WWSDI exhibited a significant correlation with the SPEI and scPDSI in the Nile, Congo, Zambezi, and Orange basins but a weak correlation in the Niger basin (Figure 8c).

In order to undertake a more thorough study, we further evaluated the temporal trends of these time series in Figure 9 in light of the fact that the association between the WWSDI and SPI, SPEI, and scPDSI was strongest in some situations while being less in others. As shown in Figure 9, the performance of WWSDI and its response to climate change correspond to the peaks and troughs of SPI, SPEI, and scPDSI over most basins. For example, all indicators showed that the largest troughs occurred in the Orange basin in 2003 and across the Nile and Zambezi basins in 2006. However, in several cases, WWSDI was not fitting well with SPI, SPEI, and scPDSI; for example, the drought identified by WWSDI in 2004 over the Niger basin was not detected by SPI, SPEI, and scPDSI. The variations in relationships among SPI, SPEI, scPDSI, and WWSDI are mostly likely due to the differences in hydrological components and algorithms. For example, the high correlation between the scPDSI against WWSDI in the Nile basin reflects the significant influence of soil moisture on the TWS. Some recent studies also reported the significant correlation between soil moisture and TWS over the Nile basin (e.g., Abd-Elbaky and Jin 2019). In contrast, the weak correlation of SPEI against WWSDI in the Nile basin reveals that TWS was not much affected by evapotranspiration and soil moisture. In this context, the Niger basin was previously characterized as having a long-term high reduction in water storage between 2002 and 2008 (Ferreira et al. 2018), which corroborates our findings (Figure 7c). Thus, the availability of the stored water was less in the Niger basin, which affects the weak correlation of WWSDI against SPEI and scPDSI. Overall, WWSDI showed a good consistency with SPI, SPEI, and scPDSI in drought monitoring over most of the basins, which verifies the reliability of WWSDI in this study.

Analysis of Droughts in the Major Basins of Africa

Figure 10 displays the WWSDI-obtained drought events for the major African basins from January 2003 to December 2016. Table 5 represents the magnitude, intensity, and duration characteristics of WWSDI for all the basins. The magnitude is calculated as accumulated WWSDI, and the intensity is calculated as the ratio of magnitude to duration (i.e., magnitude/duration) (Zargar et al. 2011; Wang et al. 2020).

Four drought events were detected in the Nile basin for 73 months during 2003, 2004–2006, and 2009–2011. In addition, two wet events occurred during 2006–2008 and 2011–2016; however, wet events became frequent after 2011. The most severe droughts (intensity of −1.15) occurred during 2004–2006 period, which is in line with the conclusions of previous studies conducted on the Nile basin (Hasan et al. 2021; Nigatu et al. 2021). The second and third severe drought events that took place during the 2009–2011 and 2003 regimes are consistent with the findings of Nigatu et al. (2021). However, in the current study, the results reveal that the identified drought episodes using WWSDI exhibited less magnitude than what was reported by Nigatu et al. (2021), who used WSDI. Moreover, the current study witnessed more recovery periods, particularly during the 2014–2016 period, than that of Nigatu et al. (2021). These differences can be attributed to the GRACE data period and the fact that treating the weight of different TWS components equally may overestimate the severity and duration of drought conditions in the Nile basin. In the Congo basin, six drought events over 79 months were observed during the 2004, 2005–2006, 2007, 2010–2012, 2013–2014, and 2015 periods; in addition, five wet events were identified during the 2003–2004, 2008, 2009–2010, 2014, and 2015–2016 periods. The years 2010–2012 exhibited the highest frequency of droughts (with an intensity of −1.23). Our findings are in line with those of those who observed the big drought occurrences that occurred over the Congo basin in 2005, 2006, and 2012. In the Niger basin, two prolonged drought episodes for 84 months were detected during 2003–2007 and 2007–2009; in addition, two significant wet events were observed between 2010–2011 and 2012–2016. However, after the 2009 period, there was a transition from dry to wet conditions. The severest drought event (intensity of −1.02) occurred during the 2003–2007 period, which is consistent with the findings of Ferreira et al. (2018), who carried out a study on the Niger basin. In the Zambezi basin, three drought events for 76 months were observed during the 2003–2004, 2005–2007, and 2015–2016 periods. Moreover, extended wet periods with water gain that began gradually in
identified by the Weighted Water Storage Deficit Index (WWSDI).

Table 5. Drought characteristics in the major river basins in Africa

<table>
<thead>
<tr>
<th>Basin</th>
<th>No.</th>
<th>Period</th>
<th>Magnitude</th>
<th>Intensity</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nile</td>
<td>1</td>
<td>Jan 2003–Jun 2003</td>
<td>−2.39</td>
<td>−0.48</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Sep 2003–Dec 2003</td>
<td>−1.45</td>
<td>−0.36</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Apr 2004–Oct 2006</td>
<td>−35.78</td>
<td>−1.15</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Jan 2009–Sep 2011</td>
<td>−22.36</td>
<td>−0.68</td>
<td>33</td>
</tr>
<tr>
<td>Congo</td>
<td>1</td>
<td>Jan 2004–Nov 2004</td>
<td>−4.25</td>
<td>−0.39</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Jan 2005–Nov 2006</td>
<td>−24.85</td>
<td>−1.08</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Mar 2007–Jul 2007</td>
<td>−1.55</td>
<td>−0.31</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Dec 2010–Oct 2012</td>
<td>−28.40</td>
<td>−1.23</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Jan 2013–Jan 2014</td>
<td>−8.01</td>
<td>−0.62</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Jan 2015–Apr 2015</td>
<td>−2.38</td>
<td>−0.60</td>
<td>4</td>
</tr>
<tr>
<td>Niger</td>
<td>1</td>
<td>Jan 2003–May 2007</td>
<td>−54.01</td>
<td>−1.02</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Jul 2007–Dec 2009</td>
<td>−19.64</td>
<td>−0.65</td>
<td>30</td>
</tr>
<tr>
<td>Zambezi</td>
<td>1</td>
<td>Jan 2003–Dec 2004</td>
<td>−24.34</td>
<td>−1.02</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Jan 2005–Dec 2007</td>
<td>−28.62</td>
<td>−0.79</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Sep 2015–Dec 2016</td>
<td>−15.7</td>
<td>−0.98</td>
<td>16</td>
</tr>
<tr>
<td>Orange</td>
<td>1</td>
<td>Jan 2003–Jan 2006</td>
<td>−40.07</td>
<td>−1.08</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Mar 2007–Nov 2007</td>
<td>−8.50</td>
<td>−0.95</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Apr 2009–Jul 2009</td>
<td>−1.30</td>
<td>−0.32</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Jun 2010–Jan 2011</td>
<td>−5.05</td>
<td>−0.63</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Jul 2015–Dec 2016</td>
<td>−12.89</td>
<td>−0.72</td>
<td>18</td>
</tr>
</tbody>
</table>

Figure 10. Drought events during 2003–2016 based on the Weighted Water Storage Deficit Index (WWSDI) for the (a) Nile, (b) Congo, (c) Niger, (d) Zambezi, and (e) Orange river basins.

The deviations in our drought evaluation results, along with those of previous studies, could be attributed to the period of the data sets and the utilized index method (WWSDI). Our results indicated long-term drought occurrence from 2003 to 2006 over the Nile basin, from 2003 to 2009 over the Niger basin, and from 2003 to 2008 over the Zambezi basin, with the inclusion of few wetting months. This article’s findings confirmed a general wetting tendency for the Nile, Niger, Zambezi, and Orange basins. Also, a mild trend (close to 0 mm) over the Congo basin was observed. The onset of the drought recovery period was consistent with the precipitation trends over the five river basins. However, considering the impacts of temperature increases, Africa’s vulnerability to large-scale droughts may continue to increase (Ahmadalipour and Moradkhani 2018). The weather circulations in Africa have also been strongly influenced by large-scale atmospheric modes, such as the Indian Ocean Dipole (Anyah et al. 2018; Ni et al. 2018).

Discussion

Since GRACE observations can track changes in large-scale water storage, they are an essential tool in hydro-climatological investigations. Although established drought indices based on GRACE TWS (such as the WSDI and DSI) can identify vertically integrated water storage deficits, it can be challenging to estimate how much groundwater, surface water, or soil moisture deficits contribute to the overall water loss (Emerton et al. 2016). Thus, they reflect only integrated drought conditions, including groundwater drought. Furthermore, under the influence of climate change, the change characteristics (e.g., magnitude, variability, and duration) of each component are quite different (Wang et al. 2022). As a result, rather than evaluating all components as a whole, it is required to study the influence of each component separately in order to better comprehend the effects of climate change. In this study, a comprehensive drought index (WWSDI) was applied to evaluate drought events over the five large basins in Africa. The constructed index considers the contribution of a single component of the TWS deficit (i.e., surface, soil moisture, and groundwater) to the total water loss. The WWSDI has been successfully applied to the Yangtze basin as a case study scenario (Wang et al. 2020). Contextually, we determined a significant consistency among WWSDI and GRACE WSDI, SPI, SPEI, and scPDSI over the five African basins. This may indicate solid evidence on the applicability and capability of WWSDI over the river basins of Africa. Our research revealed that various TWS components contributed differently to TWS change and responded differently to drought patterns across all basins. Findings also provide more granular and differentiated information that can help improve researchers’ knowledge of the hydrological factors and how they contribute to the overall characteristics of drought occurrences in the region. Therefore, it is seen to be more trustworthy to develop drought indices from GRACE when considering water components individually and in a differently weighted manner.

In order to provide decision makers with unique information for planning and management, we have, for the first time, evaluated the deficiency change of TWS components and their reaction to climate change in vast African basins. However, until this study was conducted, analysis of water components in major African river basins was uncommon or rare. We acknowledge that some shortcomings and uncertainties remain existed in this study. First, the WWSDI time series is only 13 years, which is insufficient to conclude a robust finding from a climatic perspective; however, longer-term data (at least 30 years) are needed to determine the baseline of the occurrence and severity.
of water storage deficits (Liu et al. 2020). Furthermore, analysis of the severity of drought events based on three or more continuous negative values of WWSDI is not suitable for monitoring all drought events, particularly short-term drought (Wu et al. 2021). Additionally, it worth noting that using linear interpolation to fill the GRACE time series’ missing values would also induce errors in drought estimation (Andam-Akorful et al. 2015; Sun et al. 2018). However, despite this approach being simple and widely used to handle missing data, other construction techniques, such as artificial neural networks, may provide more accurate data in the future (Ahmed et al. 2019).

Second, using WGHM outputs to separate water components from GRACE TWS might be subject to large uncertainty (Wang et al. 2020). For predicting TWS components accurately, specifically groundwater storage (Hosseini-Moghari et al. 2020). This is mainly because of the intricate interplay between the aquifer and surface water hydrology. Nevertheless, Ferreira et al. (2020) introduced a unique reconstruction method that combines remotely sensed and modeled data in order to estimate the water compartments from TWS. This method may also improve the precision of WWSDI. Although GRACE measurements are found to be effective to monitor large- or global-scale drought, the resolutions of the GRACE observations are associated with certain limitations for use at the subbasin scale or submonthly time periods (Kumar et al. 2016; Li et al. 2019).

Data assimilation techniques have been proposed in future studies to improve the limitations of the GRACE data and WWSDI estimates by assimilating the GRACE/FO observation into hydrological models. Thus, finer drought maps than of GRACE scale (around 150 000 km2 at midlatitudes) could be generated, which is crucial for accurate drought monitoring.

Conclusion

In recent decades, severe droughts have affected many river basins worldwide, causing environmental and social damage. Prioritizing adaptation measures requires drought evaluation over large river basins around the world. In this study, we generated the WWSDI based on combined TWS from GRACE and WGHM utilizing the CCR of each component as their weight to assess the occurrences of drought throughout the major African basins from January 2003 to December 2016. The main findings of the study are summarized as follows:

• Precipitation is the primary hydrologic input for the TWS change, and the distribution of both parameters showed a significant seasonal change in the five river basins.

• Regarding CCR, SMS and SWS rank the second and third, while GWS change ranks the first and accounts for 56%, 61%, 47%, 64%, and 78% of TWS change in the Nile, Congo, Niger, Zambezi, and Orange basins, respectively. These results showed that different water components contribute distinctly to TWS change over those basins.

• A according to WCSDI and WCSDI distribution, different water components play different roles in response to drought events in the basins. The WDSDI, SPI, SPEI, and WPDSDI are correlated significantly against WWSDI over the Nile, Congo, Zambezi, and Orange basins. In the Niger basin, SPI is significantly correlated with WWSDI. Overall, our findings indicate that the WWSDI can successfully detect drought events over major basins in Africa.

• Based on WWSDI, the most severe droughts occurred in 2006, 2012, 2006, 2006, and 2003 in the Nile, Congo, Niger, Zambezi, and Orange basins, respectively. A significant wetting tendency was detected over the Nile, Niger, Zambezi, and Orange basins, while a mild trend was observed in the Congo basin. The study of this nature may be helpful to policymakers and managers seeking to promote sustainable water resource management and development.

Acknowledgments

This work was supported by Strategic Priority Research Program project of the Chinese Academy of Sciences (grant no. XDA23040100). We also thank A bubbaker Omer, M ohamed A bdalalah A hmed A lriah, and Isaac Sarfo for discussions and suggestions.

Masih, I., S. Maskey, F.E.F. Mussá, and P. Trambauer. 2014. A review of...