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Abstract
Terrestrial water storage (TWS) plays a vital role in climatological and 
hydrological processes. Most of the developed drought indices from 
the Gravity Recovery and Climate Experiment (GRACE) over Africa 
neglected the influencing roles of individual water storage components 
in calculating the drought index and thus may either underestimate 
or overestimate drought characteristics. In this paper, we proposed a 
Weighted Water Storage Deficit Index for drought assessment over the 
major river basins in Africa (i.e., Nile, Congo, Niger, Zambezi, and 
Orange) with accounting for the contribution of each TWS component 
on the drought signal. We coupled the GRACE data and WaterGAP Global 
Hydrology Model through utilizing the component contribution ratio 
as the weight. The results showed that water storage components 
demonstrated distinctly different contributions to TWS variability 
and thus drought signal response in onset and duration. The most 
severe droughts over the Nile, Congo, Niger, Zambezi, and Orange 
occurred in 2006, 2012, 2006, 2006, and 2003, respectively. The 
most prolonged drought of 84 months was observed over the Niger 
basin. This study suggests that considering the weight of individual 
components in the drought index provides more reasonable and 
realistic drought estimates over large basins in Africa from GRACE.

Introduction
Droughts have increased in frequency and severity due to cli-
mate change throughout the world’s river basins in recent decades 
(Forootan et al. 2019). According to the sixth assessment report of the 
International Panel for Climate Change (IPCC), global temperatures 
have risen by ~1°C since industrialization, which may further amplify 
by 1.5°C between 2030 and 2050 as a result of human activities 
(IPCC 2018). As the population grows and water demand increases, 
droughts are triggered and aggravated by anthropogenic activities such 
as deforestation and the construction of dams (Schlosser et al. 2014; 
AghaKouchak 2015; Omer et al. 2020; Sarfo et al. 2022). To prioritize 
adaptation actions in global hot spots, it is essential to characterize 
droughts.

Although the continent has abundant water resources with meeting 
its ecological and agricultural needs, climatic extremes are becoming 

increasingly perilous, endangering the valuable water supply and mil-
lions of lives on the continent (Masih et al. 2014; IPCC 2022). Two of 
the biggest drought tragedies ever documented in history occurred in 
the Sahel region in 2007 and the Nile basin in 1984. These droughts 
caused the death of approximately 750 000 people (Vicente-Serrano 
et al. 2012). Future projections indicate that the probability of drought 
occurrence will increase across the entire African continent, leading to 
significant regional implications (Ahmadalipour and Moradkhani 2018; 
IPCC 2022). Additionally, excessive water demand may lead to the 
overuse of freshwater resources, which might result in disputes among 
water users during dry spells. This may increase the risk of hydro-polit-
ical tension in Africa, as the Transboundary Rivers represent 64% of the 
entire region’s landmass (United Nations Environment Program 2010). 
Monitoring the drought situation in Africa is crucial for prioritizing 
adaptations to avert water scarcity and disputes.

Long and uninterrupted in situ hydro-climatic observations are 
required for drought monitoring. Yet Africa’s land-based observation 
network has been deteriorating with time, having only one-eighth of the 
minimum density required by the World Meteorological Organization 
and with only 22% of stations fully meeting the Global Climate 
Observing System requirements (Dobardzic et al. 2019). Due to the 
insufficiency of in situ data records in Africa, monitoring hydrologi-
cal drought in the continent’s basins has been limited (Ferreira et al. 
2018). Additionally, a substantial financial and political commitment is 
required to record and share in situ observations, both of which are fre-
quently missing. Remote sensing observations represent an alternative 
source to counter data deficiencies in many data-poor regions world-
wide. Moreover, satellite-borne sensors have featured as an effective 
tool for tracking droughts, considering their capacity to offer regional-
to-global coverage (Jiao et al. 2021).

Several remote sensing–based products have been used globally 
to assess and detect drought situations. Among these are Moderate 
Resolution Imaging Spectroradiometer (MODIS)–based evapotrans-
piration, soil moisture from Sentinel-1 and the Soil Moisture Active 
Passive radiometer, and the Normalized Difference Vegetation Index 
from Landsat (West et al. 2019; Modanesi et al. 2020). Although these 
measurements could deliver valuable information about agricultural 
and meteorological droughts, the task of assessing hydrological drought 
remains daunting (Papa et al. 2022) since they can capture only surface 
and shallow subsurface conditions. Also, it is problematic to evaluate 
droughts based only on surface measurements (e.g., precipitation and 
soil moisture), as the reduction of water from the deepest aquifers may 
continue even after the surface storage has dried up (Leblanc et al. 
2009). After launching the Gravity Recovery and Climate Experiment 
(GRACE) satellite mission in 2002, the potential time-variable gravity 
measurement offered an integrated perspective for drought monitoring 
since it can capture vertically integrated terrestrial water storage (TWS) 
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changes (i.e., from the top surface water to the deepest groundwater) 
(Ndehedehe et al. 2018).

The unique potential of GRACE measurements offered hydrologists a 
new dimension to develop new GRACE-based drought indices (Hassan 
and Jin 2014; Jin and Zhang 2016). Therefore, numerous studies have 
applied GRACE-based indicators for drought analysis and monitoring. 
For example, Kumar et al. (2021) evaluated the drought severity over 
the Godavari basin using the GRACE Combined Climatologic Deviation 
Index. Liu et al. (2020) proposed a GRACE-based Drought Severity 
Index and assessed the drought variations for China’s large basins. 
Khorrami and Gunduz (2021) proposed an Enhanced Water Storage 
Deficit Index to observe drought conditions in Turkey. Wu et al. (2021) 
characterized the drought over southwest China using the GRACE-
derived Total Storage Deficit Index. Cui et al. (2021) developed a 
multiscale Standardized Terrestrial Index of water storage to assess the 
global hydrological droughts.

A number of studies have been performed to track droughts in 
Africa using different drought indices. Examples of earlier investiga-
tions and the indices used by different authors are listed in Table 1. The 
majority of used indices either originated from a single TWS component, 
such as surface water (precipitation) or were created primarily to take 
into account the total TWS components, including surface, soil, ground, 
snow, and canopy water. The influence role of the individual TWS 
components in drought index is not taken into account in these previous 
studies. Each water storage component is an essential hydrological 
variable to comprehend drought occurrences, according to Lopez et al. 
(2020). Since the TWS-based drought indicator considers all compo-
nents together, the primary problem is abstract. As a result, it is more 
reasonable to analyze these components separately since one of them 
(e.g., groundwater) could alleviate the drought impact. Therefore, this 
study aims to consider the role of individual TWS components and their 
relative contributions to drought index computing, which might lead to 
a more reasonable and realistic drought evaluations.

Answering the topic of how different water storage elements 
respond to drought conditions throughout Africa’s major river ba-
sins is the main goal of this study. To do this, we used the Weighted 
Water Storage Deficit Index (WWSDI) (Wang et al. 2020), which was 
developed from the GRACE WSDI but also considered the influence of 
the individual TWS components to provide further reliable droughts as-
sessment. We used the WWSDI to identify the critical drought charac-
teristics (i.e., severity, intensity, and duration) over five Africa’s major 
river basins (Nile, Congo, Niger, Zambezi, and Orange) (see Figure 
1) during the 2003–2016 period. We further compared the analysis of 
WWSDI against the GRACE-based Water Storage Deficit Index (WSDI) 
and the commonly used indicators—the self-calibrated Palmer Drought 
Severity Index (scPDSI), the Standardized Precipitation Index, and the 
Standardized Precipitation Evapotranspiration Index—to assess its 
efficiency. The understudied river basins in this article represent the 
major sources of temporal fluctuations of hydrological masses across 
the continent. They lie between 32.6°S to 31.4°N and 11.5°W to 39.8°E 
and cover a broad range of different sizes, and climate zones vary from 
humid to semiarid. More details regarding these basins are provided in 
Table 2. Further details on the data sets, the methods used, and results 
are highlighted in subsequent sections.

Materials and Methods
Data Sets
In this section, we provide a brief introduction of the data used in this 
study. Table 3 provides a tentative summary.

Precipitation
The study of droughts requires a thorough grasp of precipitation. 
This study uses monthly precipitation of 0.25° × 0.25° from 2003 
to 2016, acquired from the seventh version of the Tropical Rainfall 
Measurement Mission (TRMM 3B43) (Huffman et al., 2007). Numerous 
studies (Ferreira et al. 2018; Abd-Elbaky and Jin 2019) have been con-
ducted over Africa using this data set. Moreover, Awange et al. (2016) 
reported that TRMM was suitable for hydrometeorological applications 
over most parts of Africa.

Potential Evapotranspiration
The present study utilizes monthly potential evapotranspiration (PET) 
retrieved from the MOD16A2 sensor, publicly available worldwide at 
8-day temporal resolutions and 500-m spatial resolution (Running et 
al. 2017). We select MODIS16A2 data sets due to their relatively lower 
magnitude of uncertainty and rather good performance over the region 
(Andam-Akorful et al. 2015; Mekonnen et al. 2022). MODIS16A2 PET 
data extraction was conducted using Google Earth Engine (GEE). The 
8-day PET data were averagely weighted to obtain the monthly PET 
values for this study.

GRACE-Derived TWS Anomalies
GRACE measurements (Jin et al. 2011; Ndehedehe et al. 2020) provide 
useful information for hydrological studies since they offer a quan-
titative assessment of monthly variations of water in lakes, rivers, 
reservoirs, snow, soil, and aquifers. The present study employs the 
sixth release of the spherical harmonics coefficient solutions processed 
by the Center for Space Research (CSR) at the University of Texas at 
Austin (Zhang et al. 2018), to derive gridded terrestrial water storage 
anomaly (TWSA) data over the selected river basins from 2003 to 2016 
at a spatial resolution of 1°.

The coefficients were processed by being truncated at degree and 
order 60. They were then filtered and destriped using a 400-km-radius 
Gaussian filter. The leakage reduction and averaging approach (Khaki 
et al. 2018) were used in this study to minimize the leakage error con-
tributions over the understudied river basins. The missing months in the 

Table 1. Different drought indices employed in previous studies.
River
Basin Drought Indices/Data Inputs References

Nile

GRACE TWSD Hasan et al. (2021)
SPI, SPEI, SSI

Nigatu et al. (2021)

MSDI
PDSI
GRACE WSDI
GRACE CCDI
GRACE GGDI

Congo

SPI, SRI Ndehedehe et al. (2019)
SPI, GRACE TWS change, MERRA 
TWS change Ndehedehe et al. (2017)

SPEI, GRACE-TWS change Ndehedehe et al. (2020)

Niger

De-seasoned GRACE TWS change Ferreira et al. (2018)
SPI, SPEI, SRI Oguntunde et al. (2018)
SPI, GRACE TWS change, MERRA 
TWS change Ndehedehe et al. (2017)

Zambezi
GRACE WSD Thomas et al. (2014)
SPI, TSDI

Hulsman et al. (2021)
WLDI

Orange SPI, SPEI Abiodun et al. (2019)
CCDI = Combined Climatologic Deviation Index; GGDI = GRACE 
Groundwater Drought Index; GRACE = Gravity Recovery and Climate 
Experiment; MSDI = Precipitation and Soil Moisture Integrated Index; 
PDSI = Palmer Drought Severity Index; SPEI = Standardized Precipitation 
Evapotranspiration Index; SPI = Standardized Precipitation Index; SRI = 
Standardized Runoff Index; SSI = Soil Moisture Index; TSDI = Total Storage 
Deficit Index; TWSD = total water storage deficit; WLDI = Water-Level Deficit 
Index; WSD = water storage deficit; WSDI = Water Storage Deficit Index.

Table 2. Area, length, climate, and mean annual precipitation of river 
basins selected in this study.
River 
Basin

Area 
(105 km2)

Length 
(km) Climate

Mean Annual 
P (mm)

Elevation 
(m)

Nile 31.8 6700 Semiarid 678 726
Congo 37.5 4667 Humid 705 737
Niger 21.8 4200 Semiarid 1504 419
Zambezi 13.8 2650 Semiarid 975 1003
Orange 9.7 2300 Semiarid 359 270
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time series were filled using linear interpolation via averaging the prior 
and subsequent months (Yang et al. 2017).

scPDSI Gridded Data Sets
This study utilizes monthly scPDSI (Wells et al. 2004) time-series 
(v4.04) data sets for the period 2003–2016, with a spatial resolution 
of 0.5°. The data sets were collected from the Climate Research Unit 
(CRU) at the University of East Anglia, United Kingdom.

WaterGAP Global Hydrology Model
This study uses the WaterGAP Global Hydrology Model (WGHM) to 
separate the components of GRACE TWS data (i.e., surface water storage 
[SWS], soil moisture storage [SMS], groundwater storage [GWS], snow 
water equivalent [SWE], and plant canopy water storage [CWS]). Given 
that the SWS and GWS are taken into account, the WaterGAP model has 
an advantage over the Global Land Data Assimilation System (GLDAS) 
(Huang et al. 2019). Moreover, climate fluctuations and anthropogenic 
influences on water availability are also considered (Wang et al. 2020). 
The recent model version (WaterGAP 2.2d) at a resolution of 0.5° is used 

in this study (Müller Schmied et al. 2021). The data are available from 
January 2000 to December 2016.

Methodology
Processing Standardized Drought Indices
Standardized indices are widely used to quantify droughts worldwide. 
We employ SPI, SPEI, and scPDSI to assess the effectiveness of WWSDI 
in characterizing drought events over the chosen basins for this study. 
SPI is a meteorological drought index that is based only on precipita-
tion (Satish Kumar et al. 2021). To compute SPI, the monthly TRMM 
precipitation is normalized by utilizing an equal probability function. 
SPEI is an expansion of SPI, as it includes the influence of evapotrans-
piration on drought under changing environments. SPEI is computed 
by subtracting precipitation from potential evapotranspiration using 
climatic water balance. Hence, TRMM precipitation and MOD16 PET 
products were employed to calculate SPEI. It required long-term obser-
vations to reliably calculate SPI and SPEI; however, many studies, such 
as Sun et al. (2018), have successfully used the available GRACE term 

Figure 1. Map showing the location of river basins selected in this article and the elevations along the basins.

Table 3. Data sets used in this study.

Categories Data/Model
Time 
Span

Spatial 
Resolution Data Sources

GRACETWS CSR-SH (RL06) 2003–2016 1°×1° http://www2.csr.utexas.edu/grace/
Precipitation TRMM 2003–2016 0.25°×0.25° https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7
Surface water WGHM 2003–2016 0.5°×0.5° https://doi.pangaea.de/10.1594/PANGAEA.918447
Soil moisture WGHM 2003–2016 0.5°×0.5° https://doi.pangaea.de/10.1594/PANGAEA.918447
Snow water equivalent WGHM 2003–2016 0.5°×0.5° https://doi.pangaea.de/10.1594/PANGAEA.918447
Canopy water WGHM 2003–2016 0.5°×0.5° https://doi.pangaea.de/10.1594/PANGAEA.918447
Potential evaporation MOD16A2 2003–2016 500 m https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD16A2
scPDSI CRU 2003–2016 0.5°×0.5° https://crudata.uea.ac.uk/cru/data/drought/
CRU = Climate Research Unit; CSR = Center for Space Research; GRACE TWS = Gravity Recovery and Climate Experiment terrestrial water storage; scPDSI = 
self-calibrated Palmer Drought Severity Index; TRMM = Tropical Rainfall Measurement Mission; WGHM = WaterGAP Global Hydrology Model.
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to characterize drought phenomena. Both indicators can be obtained 
at different timescales (1, 3, 6, 9, 12, and 24 months). However, each 
timescale reflects a distinct condition. For example, 1 month could 
indicate meteorological types of droughts, 3 months could reflect the 
soil moisture conditions, 6 months may indicate anomalies in land 
water storage, and 9 months could depict the agricultural droughts 
well. Hence, to provide a solid validation for WWSDI performance, the 
6-month timescale was employed since it can effectively demonstrate 
the TWS deficit that was monitored by WWSDI (Sun et al. 2018; Wang et 
al. 2020). Another widely used meteorological drought index is the scP-
DSI, which is developed based on the Palmer Drought Severity Index 
(PDSI) using a physical water balance model. The scPDSI timescale is 
fixed unlike the two indices previously described.

Processing Components Estimation
As mentioned previously, TWSA is composed of the following:

	 TWSA = GWSA + SMSA + SWEA + SWSA + CWSA	 (1)

In this study, TWSA is estimated from Grace, whereas soil moisture 
storage anomalies (SMSA), snow water equivalent anomalies (SWEA), 
surface water storage anomalies (SWSA), and canopy water storage 
anomalies (CWSA) are the anomalies of SMS, SWE, SWS, and CWS, 
deduced from the WGHM. Groundwater storage anomalies (GWSA) are 
estimated via subtracting TWSA from the WGHM-derived components in 
Equation 1. Note that the SWEA and CWSA have minimal contribution 
to TWSA over African basins. Thus, they are assumed to be negligible 
and not considered in groundwater storage anomalies computation, as 
indicated in Equation 1 (further description provided in “Results and 
Analysis”). SMSA and SWSA are expanded into the spherical harmonic 
coefficients, truncated to 60°, ordered, and filtered by Gaussian filter. 

Component Contribution Ratio
We utilized the component contribution ratio (CCR) to determine the 
mean percentage contribution of a single water storage component 
to the temporal variability of the total TWS (Huang et al. 2019). CCR 
is calculated as the ratio of the mean absolute deviation (MAD) of a 
storage component to the total TWS variability (TV), as expressed by 
(Zhang et al. 2019)

	 	
(2)

where MADs =   , S denotes the single storage components,

and TV is the total variability, calculated as summation of all 
components MADs ( ).

Processing the WWSDI
In this study, in order to depict drought in the five large Africa’s basins, 
we adopted the WWSDI developed by Wang et al. (2020). WWSD is 
based on WSD, which represents the difference between TWSA time 
series and the monthly means of TWSA values (Thomas et al. 2014) and 
is computed as

	 WSDu,v = TWSAu,v – TWSAv	 (3)

where TWSAu,v is the value of TWSA time series for the vth month of the 
uth year and twsav is the mean value of the vth month of TWSA dur-
ing the study period. A negative deviation represents storage deficits. 
Furthermore, three continuous negative months or longer is considered 
a drought event (Thomas et al. 2014). In order to make comparisons 
against SPI, SPEI, and scPDSI in this study, the WSD is normalized to 
WSDI by the zero-mean normalization method, based on the expression

	 	
(4)

where σ and μ indicate standard deviations and the mean of the WSD 
time series, respectively. In order to construct WWSD, we incorporated 

different TWS components (i.e., GWS, SWS, and SMS) to the drought in-
dex by weighting these components through their CCR using Equation 
2. We subsequently calculated the water deficit for each component 
(i.e., groundwater storage deficit [GWSD], surface water storage 
deficit [SWSD], and soil moisture storage deficit [SMSD]) like the WSD. 
Thereafter, WWSD was generated by combining these water compo-
nents’ deficits after multiplying them by their respective weights,

	 WWSD = ω1GWSD + ω2SWSD + ω3SMSD	 (5)

where ωi (= 1, 2, 3) represent the derived weight from Equation 2. Finally, 
WWSDI is achieved by normalizing WWSD, as shown in Equation 4.

Results and Analysis
Distribution of Precipitation, Terrestrial Water Storage, and Its Components
The monthly averaged TWSA variation and its individual components 
other than precipitation over 14 years (from January 2003 to December 
2016) are illustrated in Figure 2. A clear seasonal cycle as well as 
interannual variation in the amount of TWSA, GWSA, SMSA, SWSA, and 
precipitation are visible for all the basins. CWSA and SWEA variations 
were observed to be minimal over all the basins. Thus, the latter two 
components are not considered in the following analysis.

Figure 2. Time series of monthly precipitation, the terrestrial water 
storage anomaly (TWSA), and the terrestrial water components 
storage anomaly (WCSA) in the (a) Nile, (b) Congo, (c) Niger, (d) 
Zambezi, and (e) Orange river basins.
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A comparison of precipitation and the TWSA seasonal cycle is 
shown in Table 4. It can be observed that both the Nile and the 
Niger basins followed broadly similar seasonal cycle variation 
since they have similar climatological/hydrological characteristics. 
Also, the Zambezi and Orange basins revealed similar pattern of 
the rainiest and driest months in terms of precipitation and TWSA.

It is clear from Figure 2 that a time lag exists between the 
peak of precipitation and TWSA as well as between the individual 
components of TWSA. Herein, the lag between TWSA, GWSA, SMSA, 
SWSA, and precipitation is further quantified via calculating the 
Pearson correlation coefficients among these storage components 
as well as the respective perception for different time lags (i.e., 
0–12 months). Subsequently, the value of the maximum correla-
tion coefficient between each two variables and the lags (numbers 
in brackets) corresponding to those maximum values are identified and 
shown in Figure 3.

The results from Figure 3 suggest a time lag of 0 to 2 months 
between TWS anomalies derived from GRACE and precipitation over 

the five basins. In general, the change in TWS was clearly noticeable in 
the season following the precipitation change over all basins (see Table 
4). This result is consistent with the findings of Abd-Elbaky and Jin 
(2019) and Zhang et al. (2019). Concerning the lags between individual 

Table 4. Wet and dry seasons of precipitation and terrestrial water storage 
anomalies (TWSA) over large African river basins.

River 
Basin

Wet Months Dry Months

Precipitation 
(mm)

TWSA 
(mm)

Precipitation 
(mm)

TWSA 
(mm)

Nile Jun–Aug (101.5) Sep–Nov (48.3) Dec–Feb (14.5) Mar–May (−41.9)

Congo Sep–Nov (154.4) Dec–Feb (32.8) Jun–Aug (7.9) Sep–Nov (−47.2)

Niger Jun–Aug (136) Sep–Nov (75.7) Dec–Feb (2.6) Mar–May (−64.8)

Zambezi Dec–Feb (204.6) Mar–May(49.7) Jun–Aug (2.8) Sep–Nov (−188.6)

Orange Dec–Feb (60.7) Mar–May(6.45) Jun–Aug (7.09) Sep–Nov (−9.33)

Figure 3. Maximum Pearson correlation coefficients between monthly terrestrial water storage anomalies (TWSA), the individual components of 
TWSA, and precipitation in the (a) Nile, (b) Congo, (c) Niger, (d) Zambezi, and (e) Orange river basins. The numbers in brackets represent the 
corresponding lag months.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 April 2023	 225



components of the TWSA and precipitation, the largest correlation coef-
ficients were observed corresponding to 2 to 3 months of lag in terms 
of GWSA and 0 to 1 month in terms of SWSA and SMSA, respectively. 
The lags between GWSA, SMSA, and SWSA against precipitation can be 
arranged as GWSA > SMSA ≥ SWSA. These findings further supported the 
assertion of precipitation as a key driver of water storage, with immense 
control over the hydrological cycle in these basins.

In each basin, the lags between TWSA, individual components of 
TWSA, and precipitation are attributed mainly to each basin’s peculiar 
geographical and climatological characteristics.

Figure 4 illustrates the calculated component contribution ratio 
(CCR) of GWSA, SMSA, and SWSA for the five major rivers in Africa. 
The results revealed that the highest contribution to total water storage 
variability over the five river basins was induced mainly by the GWS 
anomaly accounting (56%, 61%, 47%, 64%, and 78%), followed by 
SMSA (34%, 32%, 25%, 26%, and 18%) and SWSA (10%, 21%, 14%, 
10%, and 4%) for the Nile, Congo, Niger, Zambezi, and Orange basins, 
respectively. Furthermore, SMSA and SWSA peaks and troughs are not 
necessarily coincident with the peaks and troughs of TWSA, as shown in 
Figures 2 and 3. This difference is attributed mainly to the different time 
lags between precipitation falling and the response of the single TWS 
components against the precipitation. These findings denote that differ-
ent TWS components exhibit different amplitude, phase, and contribu-
tions to TWS change. This further confirms that different components 
contribute distinctly to TWS changes over the understudied basins. 
Given their unique contributions to the shift in TWS, it is natural to won-
der whether these water components react differently to the incidence of 
drought over those basins. Further answers and analysis are provided in 
the following section.

Deficit of Terrestrial Water Components in the Major Basins of Africa
Figures 5 and 6 demonstrate the time series of the derived terrestrial 
water components storage deficit (WCSD) (including GWSD, SMSD, and 
SWSD) and terrestrial water storage deficit indices (WCSDI) (includ-
ing GWSDI, SMSDI, and SWSDI) from January 2003 to December 2016 
for the five major African basins. According to Figure 5, the overall 
correlation between GWSD and WSD for the five basins ranged from 
0.91 to 0.99. SMSD and SWSD followed different patterns from that of 
GWSD during different periods in the time series. For example, over the 
Congo basin (Figure 5b), from January 2009 to January 2013, GWSD 
recorded a declining trend of −1.03 mm, whereas SMSD and SWSD 
exhibited rising trends of 0.3 mm and 0.15 mm, respectively.

To better understand the drought dynamics over the considered 
basins in this study, WCSD was also utilized as an indicator to identify 
drought events based on 3 months or more of continuous negative 
deficits (from January 2003 to December 2016), as shown in Figure 7. 
The results clearly show that different WCSD indicators detected varied 
onset, duration, and drought occurrences during the study period. 
For example, over the Nile basin (Figure 7a), groundwater storage 
deficit (GWSD) exhibited six drought events, whereas SMSD and SWSD 
exhibited 12 and 7 events, respectively, between January 2003 and 
December 2016. Moreover, a noticeable prolonged drought state in 
terms of groundwater storage (GWSD) was observed from January 2003 
to February 2007, January 2003 to December 2009, January 2003 to 
July 2008, and January 2003 to January 2006 over the Nile, Niger, 
Zambezi, and Orange basins, respectively, separated by nearly one 
wetting month. The drought trends depicted from (Figure 7a, 7c, 7d, 
and 7e) are consistent with GWSDI (Figure 6a, 6c, 6d, and 6e). The late 
response of GWS to recharge from SWS and/or the increased ground-
water withdrawal can support this finding. Furthermore, the Niger 
basin had the most prolonged GWS drought state among all the basins 
recording 7 years. Previous work by Ferreira et al. (2018) on a water 
storage (TWS) drought signal over West Africa (including the Niger 
basin) found a long drier period between 2003 and 2008. These find-
ings are consistent with the results presented in this study. According 
to the analysis of the 2003–2008 period presented in this article, the 
water storage (TWS) based drought trend is related to groundwater 
storage, where most of the TWS (i.e., 61%) in the Niger basin is induced 
mainly by GWS (Figures 4 and 7c). Ferreira et al. (2018) reported that 

Figure 4. Component contribution ratios of groundwater storage 
anomalies (GWSA), soil moisture storage anomalies (SMSA), and 
surface water storage anomalies (SWSA) to the total water storage 
anomalies (TWSA) in the major river basins of Africa.

Figure 5. Time series of water storage deficit (WSD) and water 
components storage deficit (WCSD) in the (a) Nile, (b) Congo, (c) 
Niger, (d) Zambezi, and (e) Orange river basins.
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the rainfall increasing trend between 2003 and 2008 over West Africa 
is associated with a drought period. They attributed this to the unsus-
tainable influencing of rainfall recovery to the water-storage increase 
across West Africa, in the early 2000s. Consequently, the occurrence of 
the long GWS drought state in the Niger basin may be attributed to the 
minimal or late influences of surface water on the groundwater storage 
in the early 2000s.

The results also demonstrate that SWSD and SWSDI over the Orange 
basin (Figures 6e and 7e) exhibited a long drier period from March 
2013 to December 2016 except for February and June 2013. This find-
ing is in line with an early study conducted over the South African dry-
ing signal (Munday and Washington 2019). The latter linked the decline 
in precipitation with local surface temperature change since increased 
subsidence is linked to clearer skies and higher net solar radiation. Also, 
the reduction in precipitation magnitude is correlated to the changing 
patterns of tropical sea surface temperatures. Furthermore, the exceed-
ing demand for surface water may cause the surface water shortage, 
where the water of the Orange basin is heavily utilized, and most of the 
riparian states rely on the Orange basin’s water resources for com-
mercial crop irrigation; in addition, 29 dams are operated over the river 
(Mgquba and Majozi 2020), which may cause large water abstractions.

The results acquired from WCSD and WCSDI analysis concluded that 
different water components responded differently to drought events 
over the basins in this study. Thus, these parameters can be considered 
for a more realistic and reliable drought evaluation over the major 
African basins.

Figure 6. Time series of water storage deficit index (WSDI) and water 
components storage deficit index (WCSDI) in the (a) Nile, (b) Congo, 
(c) Niger, (d) Zambezi, and (e) Orange river basins.

Figure 7. Temporal extents of identified drought events based 
on water storage deficit (WSD), water components storage deficit 
(WCSD), and weighted water storage deficit (WWSD) in the (a) Nile, 
(b) Congo, (c) Niger, (d) Zambezi, and (e) Orange river basins. 
The yellow values denote wet month, while the dark blue values 
represent drought month.
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Evaluation of WWSD Relative to WSD
As previously shown, different water components play different roles 
in response to drought events over the basins in the study. The findings 
of this article have implications for how to provide a more realistic 
drought evaluation considering the individual TWS components and 
their relative contributions to the drought index. Therefore, to further 
demonstrate the rationality behind utilizing WWSD in this study, the 
performance of WWSD and WSD in terms of drought events identifica-
tion has been assessed an is shown in Figure 7. Despite both indicators 
appearing to behave similarly, the data show some discrepancies in 
the observed onset and drought duration between WWSD and WSD. For 

example, in the Nile basin (Figure 7a), WWSD recorded one drought 
between April 2004 and October 2006, whereas WSD monitored the 
drought from March 2004 to November 2006. In the Congo basin 
(Figure 7b), WSD detected a drought event from November 2008 to 
January 2009; however, WWSD failed to identify this event. This result 
indicates that WWSD has varied sensitivity to drought events compared 
to WSD. These discrepancies, however, are explained by the weight 
given to a single TWS component in the WWSD. In conclusion, these 
findings suggest that accounting the influencing roles of these compo-
nents storage in drought index are expected to provide more accurate 
drought characteristics estimation over major basins in Africa.

Figure 8. Scatterplots of correlation between the Weighted Water Storage Deficit Index (WWSDI) and Water Storage Deficit Index (WSDI), the 
Standardized Precipitation Index (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI), and the self-calibrated Palmer Drought 
Severity Index (scPDSI) for the (a) Nile, (b) Congo, (c) Niger, (d) the Zambezi, and (e) Orange river basins. An asterisk indicates that the 
correlation is not significant. 
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WWSDI Identification of Droughts
In this study, the efficacy of WWSDI was identified by making compari-
sons with WSDI and other commonly used drought indices (i.e., SPI, SPEI, 
and scPDSI). The scatterplots in Figure 8 represent the correlation between 
WWSDI and WSDI, SPI, SPEI, and scPDSI over the five African river basins.

High positive correlations between WWSDI and WSDI are observed 
over the Nile, Congo, Niger, Zambezi, and Orange basins estimated 
at 0.98, 0.95, 0.98, 0.99, and 0.98, respectively. This strong relation 
between WWSDI and WSDI is due to their high sensitivity to GRACE TWS 
and the inclusion of TWS in their calculation procedures. However, 
the differences in correlation are attributed to the consideration of 
the weight of a single TWS component in WWSDI. WSDI is based on a 
single variable (GRACE TWSA); on the other hand, WWSDI is based on 
combining the TWS estimation from GRACE and WGHM using the CCR of 
individual TWS compartments as the weight. However, despite the fact 
that WWSDI and WSDI operate quite similarly, there is a distinction, as 
discussed in the previous section.

When comparing the WWSDI with other commonly used drought 
indices, we discovered that WWSDI is significantly correlated with SPI 
at a 0.05 significance level. The highest positive correlation (r = 0.69) 
between the two indices was observed in the Orange basin, while the 
lowest was detected in the Congo basin. WWSDI exhibited a significant 

correlation with the SPEI and scPDSI in the Nile, Congo, Zambezi, and 
Orange basins but a weak correlation in the Niger basin (Figure 8c).

In order to undertake a more thorough study, we further evaluated 
the temporal trends of these time series in Figure 9 in light of the fact 
that the association between the WWSDI and SPI, SPEI, and scPDSI was 
strongest in some situations while being less in others. As shown in 
Figure 9, the performance of WWSDI and its response to climate change 
correspond to the peaks and troughs of SPI, SPEI, and scPDSI over most 
basins. For example, all indicators showed that the biggest troughs 
occurred in the Orange basin in 2003 and across the Nile and Zambezi 
basins in 2006. However, in several cases, WWSDI was not fitting well 
with SPI, SPEI, and scPDSI; for example, the drought identified by WWSDI 
in 2004 over the Niger basin was not detected by SPI, SPEI, and scPDSI. 
The variations in relationships among SPI, SPEI, scPDSI, and WWSDI 
are most likely due to the differences in hydrological components 
and algorithms. For example, the high correlation between the scPDSI 
against WWSDI in the Nile basin reflects the significant influence of soil 
moisture on the TWS. Some recent studies also reported the significant 
correlation between soil moisture and TWS over the Nile basin (e.g., 
Abd-Elbaky and Jin 2019). In contrast, the weak correlation of SPEI and 
scPDSI with WWSDI in the Niger basin reveals that TWS was not much 
affected by evapotranspiration and soil moisture. In this context, the 
Niger basin was previously characterized as having a long-term high re-
duction in water storage between 2002 and 2008 (Ferreira et al. 2018), 
which corroborates our findings (Figure 7c). Thus, the availability of 
the stored water was less in the Niger basin, which affects the weak 
correlation of WWSDI against SPEI and scPDSI. Overall, WWSDI showed a 
good consistency with SPI, SPEI, and scPDSI in drought monitoring over 
most of the basins, which verifies the reliability of WWSDI in this study.

Analysis of Droughts in the Major Basins of Africa
Figure 10 displays the WWSDI-obtained droughts events for the major 
African basins from January 2003 to December 2016. Table 5 repre-
sents the magnitude, intensity, and duration characteristics of WWSDI 
for all the basins. The magnitude is calculated as accumulated WWSDI, 
and the intensity is calculated as the ratio of magnitude to duration 
(i.e., magnitude/duration) (Zargar et al. 2011; Wang et al. 2020).

Four drought events were detected in the Nile basin for 73 months 
during 2003, 2004–2006, and 2009–2011. In addition, two wet events 
occurred during 2006–2008 and 2011–2016; however, wet events be-
came frequent after 2011. The most severe droughts (intensity of −1.15) 
occurred during 2004–2006 period, which is in line with the conclusions 
of previous studies conducted on the Nile basin (Hasan et al. 2021; 
Nigatu et al. 2021). The second and third severe drought events that 
took place during the 2009–2011 and 2003 regimes are consistent with 
the findings of Nigatu et al. (2021). However, in the current study, the 
results indicate that the identified drought episodes using WWSDI exhib-
ited less magnitude than what was reported by Nigatu et al. (2021), who 
used WSDI. Moreover, the current study witnessed more recovery peri-
ods, particularly during the 2014–2016 period, than that of Nigatu et al. 
(2021). These differences can be attributed to the GRACE data period and 
to the fact that treating the weight of different TWS components equally 
may overestimate the severity and duration of drought conditions in the 
Nile basin. In the Congo basin, six drought events over 79 months were 
observed during the 2004, 2005–2006, 2007, 2010–2012, 2013–2014, 
and 2015 periods; in addition, five wet events were identified during 
the 2003–2004, 2008, 2009–2010, 2014, and 2015–2016 periods. The 
years 2010–2012 exhibited the highest frequency of droughts (with an 
intensity of −1.23). Our findings are in line with those of who observed 
the big drought occurrences that occurred over the Congo basin in 2005, 
2006, and 2012. In the Niger basin, two prolonged drought episodes for 
84 months were detected during 2003–2007 and 2007–2009; in addi-
tion, two significant wet events were observed between 2010–2011 and 
2012–2016. However, after the 2009 period, there was a transition from 
dry to wet conditions. The severest drought event (intensity of −1.02) 
occurred during the 2003–2007 period, which is consistent with the 
findings of Ferreira et al. (2018), who carried out a study on the Niger 
basin. In the Zambezi basin, three drought events for 76 months were 
observed during the 2003–2004, 2005–2007, and 2015–2016 periods. 
Moreover, extended wet periods with water gain that began gradually in 

Figure 9. Time series of the Weighted Water Storage Deficit Index 
(WSDI), the Water Storage Deficit Index (WSDI), the Standardized 
Precipitation Index (SPI), the Standardized Precipitation 
Evapotranspiration Index (SPEI), and the self-calibrated Palmer 
Drought Severity Index (scPDSI) for the (a) Nile, (b) Congo, (c) 
Niger, (d) Zambezi, and (e) Orange river basins.
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2008 and greatly escalated from 2010 until the second half of 2015 were 
found. The severest drought event (intensity of −1.02) occurred during 
the 2003–2004 period. In their retrospective analysis of the Zambezi 
basin, Hulsman et al. (2021) equally confirmed that drought events 
occurred in the 2003–2004, 2005–2007, and 2015–2016 periods. In the 
Orange basin, five drought events over a total of 76 months were identi-
fied during the 2003–2006, 2007, 2009, 2010–2011, and 2015–2016 
periods. In addition, four wet events were observed during the 2006, 
2007–2008, 2009–2010, and 2011–2015 periods. The severest drought 
event (intensity of −1.08) occurred during 2003–2006. Additionally, the 
identified drought events over the region in 2004, 2005, 2007, 2011, and 
2013 are in agreement with the findings of Masih et al. (2014).

The deviations in our drought evaluation results, along with those 
of previous studies, could be attributed to the period of the data sets 
and the utilized index method (WWSD). Our results indicated long-term 
drought occurrence from 2003 to 2006 over the Nile basin, from 2003 
to 2009 over the Niger basin, and from 2003 to 2008 over the Zambezi 
basin, with the inclusion of few wetting months. This article’s findings 
confirmed a general wetting tendency for the Nile, Niger, Zambezi, and 
Orange basins. Also, a mild trend (close to 0 mm) over the Congo basin 
was observed. The onset of the drought recovery period was consis-
tent with the precipitation trends over the five river basins. However, 
considering the impacts of temperature increases, Africa’s vulnerability 
to large-scale droughts may continue to increase (Ahmadalipour and 
Moradkhani 2018). The weather circulations in Africa have also been 
strongly influenced by large-scale atmospheric modes, such as the 
Indian Ocean Dipole (Anyah et al. 2018; Ni et al. 2018).

Discussion
Since GRACE observations can track changes in large-scale water stor-
age, they are an essential tool in hydro-climatological investigations. 
Although established drought indices based on GRACE TWS (such as the 
WSDI and DSI) can identify vertically integrated water storage deficits, it 
can be challenging to estimate how much groundwater, surface water, 
or soil moisture deficits contribute to the overall water loss (Emerton et 
al. 2016). Thus, they reflect only integrated drought conditions, includ-
ing groundwater drought. Furthermore, under the influence of climate 
change, the change characteristics (e.g., magnitude, variability, and 
duration) of each component are quite different (Wang et al. 2022). As 
a result, rather than evaluating all components as a whole, it is required 
to study the influence of each component separately in order to better 
comprehend the effects of climate change. In this study, a comprehen-
sive drought index (WWSDI) was applied to evaluate drought events 
over the five large basins in Africa. The constructed index considers 
the contribution of a single component of the TWS deficit (i.e., surface, 
soil moisture, and groundwater) to the total water loss. The WWSDI has 
been successfully applied to the Yangtze basin as a case study scenario 
(Wang et al. 2020). Contextually, we determined a significant consis-
tency among WWSDI and GRACE WSDI, SPI, SPEI, and scPDSI over the 
five African basins. This may indicate solid evidence on the applicabili-
ty and capability of WWSDI over the river basins of Africa. Our research 
revealed that various TWS components contributed differently to TWS 
change and responded differently to drought patterns across all basins. 
Findings also provides more granular and differentiated information 
that can help improve researchers’ knowledge of the hydrological fac-
tors and how they contribute to the overall characteristics of drought 
occurrences in the region. Therefore, it is seen to be more trustworthy 
to develop drought indices from GRACE when considering water com-
ponents individually and in a differently weighted manner.

In order to provide decision makers with unique information for 
planning and management, we have, for the first time, evaluated the 
deficiency change of TWS components and their reaction to climate 
change in vast African basins. However, until this study was con-
ducted, analysis of water components in major African river basins 
was uncommon or rare. We acknowledge that some shortcomings and 
uncertainties remain existed in this study. First, the WWSDI time series 
is only 13 years, which is insufficient to conclude a robust finding from 
a climatic perspective; however, longer-term data (at least 30 years) 
are needed to determine the baseline of the occurrence and severity 

Figure 10. Drought events during 2003–2016 based on the Weighted 
Water Storage Deficit Index (WWSDI) for the (a) Nile, (b) Congo, (c) 
Niger, (d) Zambezi, and (e) Orange river basins.

Table 5. Drought characteristics in the major river basins in Africa 
identified by the Weighted Water Storage Deficit Index (WWSDI).
River 
Basin No. Period Magnitude Intensity Duration

Nile

1 Feb 2003–Jun 2003 −2.39 −0.48 5
2 Sep 2003–Dec 2003 −1.45 −0.36 4
3 Apr 2004–Oct 2006 −35.78 −1.15 31
4 Jan 2009–Sep 2011 −22.36 −0.68 33

Congo

1 Jan 2004–Nov 2004 −4.25 −0.39 11
2 Jan 2005–Nov 2006 −24.85 −1.08 23
3 Mar 2007–Jul 2007 −1.55 −0.31 5
4 Dec 2010–Oct 2012 −28.40 −1.23 23
5 Jan 2013–Jan 2014 −8.01 −0.62 13
6 Jan 2015–Apr 2015 −2.38 −0.60 4

Niger
1 Jan 2003–May 2007 −54.01 −1.02 54
2 Jul 2007– Dec 2009 −19.64 −0.65 30

Zambezi
1 Jan 2003– Dec 2004 −24.34 −1.02 24
2 Jan 2005– Dec 2007 −28.62 −0.79 36
3 Sep 2015– Dec 2016 −15.7 −0.98 16

Orange

1 Jan 2003–Jan 2006 −40.07 −1.08 37
2 Mar 2007–Nov 2007 −8.50 −0.95 9
3 Apr 2009–Jul 2009 −1.30 −0.32 4
4 Jun 2010–Jan 2011 −5.05 −0.63 8
5 Jul 2015– Dec 2016 −12.89 −0.72 18

230	 Apr i l  2023	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



of water storage deficits (Liu et al. 2020). Furthermore, analysis of 
the severity of drought events based on three or more continuous 
negative values of WWSDI is not suitable for monitoring all drought 
events, particularly short-term drought (Wu et al. 2021). Additionally, 
it worth noting that using linear interpolation to fill the GRACE time 
series’ missing values would also induce errors in drought estimation 
(Andam-Akorful et al. 2015; Sun et al. 2018). However, despite this 
approach being simple and widely used to handle missing data, other 
construction techniques, such as artificial neural networks, may pro-
vide more accurate data in the future (Ahmed et al. 2019).

Second, using WGHM outputs to separate water components from 
GRACE TWS might be subject to large uncertainty (Wang et al. 2020). 
Regarding the former, most of the existing global models, including 
WGHM and even local land surface models, are uncalibrated and unable 
to predict TWS components accurately, specifically groundwater storage 
(Hosseini-Moghari et al. 2020). This is mainly because of the intricate 
interplay between the aquifer and surface water hydrology. Nevertheless, 
Ferreira et al. (2020) introduced a unique reconstruction method that 
combines remotely sensed and modeled data in order to estimate the 
water compartments from TWS. This method may also improve the preci-
sion of WWSDI. Although GRACE measurements are found to be effective 
to monitor large- or global-scale drought, the resolutions of the GRACE 
observations are associated with certain limitations for use at the subbasin 
scale or submonthly time periods (Kumar et al. 2016; Li et al. 2019). 
Data assimilation techniques have been proposed in future studies to im-
prove the limitations of the GRACE data and WWSDI estimates by assimi-
lating the GRACE/FO observation into hydrological models. Thus, finer 
drought maps than of GRACE scale (around 150 000 km2 at midlatitudes) 
could be generated, which is crucial for accurate drought monitoring.

Conclusion
In recent decades, severe droughts have affected many river basins 
worldwide, causing environmental and social damage. Prioritizing 
adaptation measures requires drought evaluation over large river basins 
around the world. In this study, we generated the WWSDI based on 
combined TWS from GRACE and WGHM utilizing the CCR of each com-
ponent as their weight to assess the occurrences of drought throughout 
the major African basins from January 2003 to December 2016. The 
main findings of the study are summarized as follows:
•	 Precipitation is the primary hydrologic input for the TWS change, 

and the distribution of both parameters showed a significant sea-
sonal change in the five river basins.

•	 Regarding CCR, SMS and SWS rank the second and third, while GWS 
change ranks the first and accounts for 56%, 61%, 47%, 64%, and 
78% of TWS change in the Nile, Congo, Niger, Zambezi, and Orange 
basins, respectively. These results showed that different water com-
ponents contribute distinctly to TWS change over those basins.

•	 According to WCSD and WCSDI distribution, different water com-
ponents play different roles in response to drought events in the 
basins. The WSDI, SPI, SPEI, and scPDSI are correlated significantly 
against WWSDI over the Nile, Congo, Zambezi, and Orange basins. 
In the Niger basin, SPI is significantly correlated with WWSDI. 
Overall, our findings indicate that the WWSDI can successfully 
detect drought events over major basins in Africa.

•	 Based on WWSDI, the most severe droughts occurred in 2006, 2012, 
2006, 2006, and 2003 in the Nile, Congo, Niger, Zambezi, and 
Orange basins, respectively. A significant wetting tendency was 
detected over the Nile, Niger, Zambezi, and Orange basins, while a 
mild trend was observed in the Congo basin.

The study of this nature may be helpful to policymakers and managers 
with seeking to promote sustainable water resource management and 
development
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