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Abstract
Drought is a devastating natural hazard and exerts profound effects 
on both the environment and society. Predicting drought occurrences 
is significant in aiding decision-making and implementing effective 
mitigation strategies. In regions characterized by limited data avail-
ability, such as Southern Africa, the use of satellite remote sensing 
data promises an excellent opportunity for achieving this predictive 
goal. In this study, we assess the effectiveness of Soil Moisture Active 
Passive (SMAP) and Cyclone Global Navigation Satellite System 
(CYGNSS) soil moisture data in predicting drought conditions using 
multiple linear regression–predicted data and Global Land Data 
Assimilation System (GLDAS) soil moisture data. SMAP and CYGNSS 
data exhibit strong spatiotemporal congruence with the predicted soil 
moisture data. Pearson correlation coefficients further underscore 
this consistency, with correlations of r = 0.78 between GLDAS and 
SMAP, r = 0.61 between GLDAS and CYGNSS, and r = 0.84 between 
GLDAS and the estimated soil moisture. The proficient performance of 
SMAP and CYGNSS soil moisture data in tandem with other vari-
ables underscores their efficacy in predicting drought conditions.

Introduction
Drought constitutes a significant natural hazard characterized by 
prolonged periods of low precipitation and elevated temperatures, 
leading to heightened evapotranspiration rates (Jin and Zhang 2016; 
Huang and Jin 2020; Elameen et al. 2023). This climatic phenomenon 
directly impacts agricultural yields due to deficits in soil moisture 
(Marsh, 2007; Dai 2011). Within the context of the Southern Africa 
region, the effect of recent drought events, spanning from 2015–2016 
to 2018–2020, has been particularly profound. These occurrences 
have exacted a heavy toll on both human livelihoods and crop yields. 

For instance, during the drought of 2015–2016, crop production 
underwent a precipitous decline of up to 66%, concurrently affecting 
over a quarter of the region's population (Ainembabazi, 2018). During 
2018–2019, the drought affected more than 40% of the population 
(Johannesburg Regional Bureau 2020), and the crop production was 
10% below the average (World Food Program 2019). 

The scientific literature commonly recognizes four distinct categories 
of drought (Mishra and Singh 2010): meteorological, agricultural, 
hydrological, and socioeconomic. Meteorological drought manifests 
as an insufficient occurrence of precipitation over a given time span—
whether short or prolonged—resulting in a deficit of soil moisture 
that adversely affects plants, giving rise to what is termed agricultural 
drought. Hydrological drought materializes when there is an insufficiency 
in water availability across streams, reservoirs, and groundwater sources. 
In contrast, socioeconomic drought pertains to the inability of water 
supply to adequately meet demand (Mishra and Singh 2010).

The prediction of drought occurrences plays a pivotal role in 
facilitating early warnings and mitigating their subsequent effects. 
Over time, numerous methodologies and formulations have been 
developed and used to achieve this objective. The predominant 
approaches comprise statistical methods and dynamical methods, 
which harness climate and/or hydrologic models to simulate the 
intricate physical processes of the atmosphere, land, and oceans (Hao 
et al. 2018). Within the realm of statistical methods, a spectrum of 
techniques is embraced, including time series models, regression 
models, artificial intelligence models, Markov chain models, and 
conditional probability models. These methodologies stand out as 
extensively used avenues. In the context of statistical methodologies, 
the identification of appropriate predictors derived from atmospheric, 
terrestrial, and oceanic domains, as well as the determination of 
predictands for the target timeframe, is of paramount importance 
(Hao et al. 2018). For instance, the efficacy of time series models 
predominantly hinges on the persistence of certain indicators, 
which serves as the bedrock for achieving accurate predictions. The 
autoregressive integrated moving average technique emerges as 
an exceptionally apt choice for prediction within climatology and 
hydrology, as it effectively handles linear relationships between 
predictors and predictands, albeit without capturing nonlinearity. In 
the realm of statistical prediction, the conventional linear regression 
method finds applications in hydrology and climatology. This method 
establishes a linear connection between the predictand and suitable 
predictors, representing the simplest avenue for climatohydrological 
prediction. The modeling of the association between drought indices 
and predictors often uses the regression model (Barros and Bowden 
2008; Liu and Juárez 2001; Panu and Sharma 2002; Sun et al. 2012). 
In scenarios in which nonlinear relationships are at play, the locally 
weighted polynomial regression offers a valuable alternative for 
modeling associations (Hwang and Carbone 2009; Liu and Hwang 
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2015). Given the intricate interplay among hydroclimatic variables, 
artificial intelligence (AI), with its nonlinear capabilities, has emerged 
as a preferable tool for climatohydrological prediction over linear 
models. Among these models, the artificial neural network, support 
vector regression, or support vector machine, fuzzy logic, wavelet 
transformation, and genetic algorithm or genetic programming are 
the most used (Bourdin et al. 2012; Fahimi et al. 2017; Nourani et al. 
2014; Rhee and Im 2017; Wang, Chau et al. 2009; Yaseen et al. 2015). 
The artificial neural network (Mishra et al. 2007; Mishra and Desai 
2006; Morid et al. 2007), wavelet transformation (Maity et al. 2016; 
Ozger et al. 2011), and support vector machine (Ganguli and Reddy 
2014) have been used for prediction within climatology and hydrology. 
For Markov chain prediction, drought is classified in dry and wet 
states with specific thresholds (Lawrimore et al. 2002; Steinemann 
and Cavalcanti 2006; Svoboda et al. 2002; Zink et al. 2016). The 
prediction of hydroclimatic variables using the joint distribution of 
conditional probability model has been used in several studies (Khedun 
et al. 2014; Liu and Hwang 2015; Wang, Robertson et al. 2009; Wu 
et al. 2011; Yan et al. 2012). In addition, Qiu et al. (2003) used the 
multiple linear regression (MLR) method with meteorological data to 
predict soil moisture deficit in the Danangou catchment in the Loess 
Plateau of China with an error of 2% only. Furthermore, soil moisture 
strengthened or weakened drought severity (Koster et al. 2017; 
Schubert et al. 2007; Su and Dickinson 2017; Yuan and Wood 2013) 
can contribute to very realistic prediction (Evans et al. 2017; Koster et 
al. 2004; Nicolai-Shaw et al. 2016; Seneviratne et al. 2010).

Studies using Soil Moisture Active Passive (SMAP) soil moisture 
estimates have reported their excellent suitability for drought monitor-
ing. For instance, Mishra et al. (2017) used SMAP data and the soil 
water deficit index to quantify agricultural drought over the United 
States. The authors found their method a very effective scheme for 
agricultural drought monitoring. Zhu et al. (2019) assessed SMAP 
derived soil water deficit index for agricultural drought monitoring in 
Xiang River Basin, China, using the Pearson correlation. Their results 
showed good performance of SMAP in drought monitoring. In addi-
tion, SMAP-derived standardized soil moisture index (SSI) was used 
to monitor drought in the Southeast of the United States by Xu et al. 
(2018). They concluded that SSI was effective for short-term drought 
monitoring after validation. Eswar et al. (2018) investigated drought 
monitoring over the United States using SMAP and verified its perfor-
mance for analyzing the responses to changes in drought conditions.

In an effort to elucidate the intricate relationships among hydrome-
teorological variables, (Nicolai-Shaw et al. 2017) used remote sensing 
data to extract composite drought indices. Their investigation unveiled 
the prominence of precipitation deficits as a pivotal driver of negative 
soil moisture conditions. Through their study, they revealed notewor-
thy anomalies in precipitation, temperature, and evapotranspiration, 
with observable delays in the response of vegetation indices during 
the zenith of arid periods. Using observations of terrestrial water 
storage gleaned from the Gravity Recovery and Climate Experiment 
(GRACE). Terrestrial water storage observations from GRACE was 
used by Thomas et al. (2014) to measure hydrological drought occur-
rence and severity in the Amazon and Zambezi River basins and the 
southeastern United States and Texas (Heki and Jin 2023). In addition, 
global navigation satellite system reflectometry also provides soil 
mositure and drought monitoring (Jin et al. 2011; Edokossi et al. 2020; 
Najibi and Jin 2013; Calabia et al. 2020; Qian and Jin 2016), particu-
larly the space-borne Cyclone Global Navigation Satellite System 
(CYGNSS).

Despite the prevalence of works focused on the utility of SMAP and 
CYGNSS soil moisture data in drought monitoring, fewer studies have 
delved into their potential for drought prediction. Qiu et al. (2003) 
used MLR and meteorological factors for spatiotemporal estimate of 
soil moisture in a small catchment of the Loess plateau in China and 
found the model useful. Jung et al. (2017) used Moderate Resolution 
Imaging Spectroradiometer (MODIS) land surface temperature (LST) 
and normalized difference vegetation index (NDVI) and precipitation 
with the MLR method to estimate spatial soil moisture in South Korea. 

MLR models were used with land use and terrain indices to predict 
soil moisture spatially by Qiu et al. (2010). Prakash et al. (2018) used 
machine learning techniques such as multiple linear regression, support 
vector regression, and recurrent neural networks for prediction of soil 
moisture and found that MLR performed well. Drought prediction 
stands as a crucial information source for decision makers, facilitating 
early warnings and bolstering disaster mitigation efforts. Within the 
realm of agricultural drought prediction, the intrinsic complexity of 
hydrological processes, particularly on a global scale, renders the 
task notably more challenging than monitoring alone. Nevertheless, 
SMAP and CYGNSS exhibit a host of advantages over traditional 
measurement methods. They encompass global coverage, operability 
under diverse weather conditions, and high spatiotemporal resolution, 
to name a few. 

This study aims to assess the predictive capabilities of SMAP and 
CYGNSS soil moisture data. This assessment is achieved through a 
comprehensive comparison and validation process against both MLR 
predicted soil moisture and the Global Land Data Assimilation System 
(GLDAS) soil moisture data set and the Southern African drought map 
of the same period. The objectives of this research are twofold. The 
first is to estimate soil moisture using the MLR method in conjunc-
tion with climatometeorological variables. Soil moisture is estimated 
through the application of the MLR method, leveraging commonly 
used climatometeorological variables such as precipitation, evapotrans-
piration, and total water storage. The second objective is to elucidate 
the spatiotemporal evolution of SMAP and CYGNSS soil moisture 
data during the 2018–2019 time frame. A critical aspect of the study 
involves the meticulous evaluation of the performance of SMAP and 
CYGNSS soil moisture data in drought prediction, achieved through 
comparative analyses with other soil moisture (GLDAS and MLR) 
data sets and a Southern African drought map. 

This paper is structured as follows: “Study Area” provides a 
detailed description of the study geography, while data and methods 
are presented in the next section. “Results and Analysis” presents the 
findings, which are subsequently dissected and contextualized with in 
“Discussion.” Finally, conclusions are given in the last section.

Study Area
Southern Africa as the study area is underpinned by the region’s 
recurrent susceptibility to drought, which significantly affects 
the local populace. A notable instance of this occurred during the 
1994–1995 period, when severe droughts afflicted a majority of 
southern African nations (Edokossi et al., 2020). This phenomenon 
was particularly pronounced in the northwestern part of Zimbabwe, 
where the 1994–1995 season experienced rainfall levels near 
historical lows. Additionally, the 2015–2016 El Niño event led to life-
threatening extreme weather across various global regions, including 
several African nations. However, a pivotal reason motivating this 
geographical choice stems from the region’s ongoing struggle with 
drought, notably spanning from 2018 to 2020 (GDACS 2020). The 
2018–2019 season was characterized by a drought that commenced in 
late October 2018, coinciding with the planting period. This event was 
classified as a level 2 red-class occurrence by the Global Disaster Alert 
and Coordination System (GDACS), posing substantial challenges to 
food security and plunging millions into conditions of food insecurity. 
Similarly, the 2019–2020 season exhibited rainfall levels below the 
historical average from mid-October to mid-December, accompanied 
by persistent dry conditions that impeded the planting season (Relief 
Web 2020).

   The choice of the 2018–2019 period can be attributed to the 
availability of SMAP and CYGNSS satellite data covering the region. 
Although SMAP and CYGNSS commenced data recording in 2015 
and 2017, respectively, their data were not universally accessible for 
this specific period. To visualize the study area and major vegetation 
biomes, seasonally averaged mean rainfall anomalies and seasonally 
averaged mean temperature anomalies, Figures 1, 2, and 3 provide a 
comprehensive depiction. 
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Figures 2 and 3 show the seasonally averaged mean rainfall anoma-
lies and temperature anomalies from 1981 to 2010, respectively. The 
maps depicted the similar spatial distribution for 2018–2019 for both 
variables. Furthermore, the spatial distribution of rainfall and tem-
perature anomalies reflect the spatial distribution of major vegetation 
biomes, denoting the overall climatic characteristics of the study area.

Data and Methods
Data Sets
This research leverages satellite soil moisture (SM) observations span-
ning from 2018 to 2019, sourced from both the SMAP and CYGNSS 
missions (Table 1). In conjunction with these, complementary data sets 
such as evapotranspiration (ET), total water storage (TWS), GLDAS 
Noah model SM, and rainfall data are also incorporated (see Table 1). 
The selection of these data sets is informed by their widespread use in 
climate–meteorological investigations of drought.

The SMAP mission, launched by the National Aeronautics and 
Space Administration (NASA) in January 2015, plays a pivotal role in 
supplying global measurements of soil moisture levels and freeze/thaw 
states (Entekhabi et al. 2010). This mission uses an ensemble of an 
L-band radar and an L-band radiometer, enabling the comprehensive 
mapping of soil moisture at a spatial resolution of 10 km. The revisit 

Figure 1. Map of the study area with major vegetation biomes 
(Lawal et al. 2019).

Figure 2. Seasonally averaged mean rainfall anomalies (percentage of mm/day) from 1981 to 2010 in Southern Africa (Source: Climate Hazards 
Group InfraRed Precipitation with Station [CHIRPS]). DJF = December to February; MAM = March to May; JJA = June to August; SON = 
September to November (Pinto 2020). 

Figure 3. Seasonally averaged mean temperature anomalies (°C) from 1981 to 2010 in Southern Africa. (a) DJF 2018/19. (b) MAM 2019. (c) 
JJA 2019. (d) SON 2019. (Source: ERA5). DJF = December to February; MAM = March to May; JJA = June to August; SON = September to 
November (Pinto 2019). 
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time spans 2–3 days, encompassing both clear and cloudy sky condi-
tions. By fusing radar and radiometer measurements, SMAP extends 
the capability of delivering high-resolution soil moisture data. This is 
achieved by combining radiometer-derived soil moisture retrieval, of-
fering elevated accuracy albeit coarser spatial resolution (40 km), with 
radar data (1–3 km) of finer resolution albeit lower retrieval accuracy. 
This integration affords the estimation of soil moisture across a diverse 
array of vegetation conditions (Entekhabi et al. 2010). For the SMAP 
data set, the Enhanced L3 version 4 soil moisture (SPL3SMAP) was 
used (Entekhabi et al. 2016). This L3SMAP data set is a composite 
amalgamation of daily global land surface condition estimates. The 
primary parameter is the surface soil moisture (typically representa-
tive of the top 5 cm, measured in cm3/cm3), presented on a global 9 km 
EASE-Grid 2.0, formatted as a Geotiff (Entekhabi et al. 2016). 

 CYGNSS, specializing in surface remote sensing, is primarily 
designed to measure ocean surface wind across all precipitation condi-
tions. Comprising eight microsatellites, CYGNSS facilitates targeted 
observations with an average revisit interval of approximately 7 hours. 
With an inclination of 35° relative to the equator, it spans latitudes 
between approximately 38° N and 38° S. The CYGNSS level 3 version 
1.0 SM data set, ranging from 0- to 5-cm depth and featuring a spatial 
resolution of 0.3° (latitude) × 0.37° (longitude), is used (CYGNSS 
2020). Presented in volumetric water content (cm3/cm3), the data are 
archived daily in netCDF-4 format.  

 GLDAS encompasses four land surface models (Mosaic, Noah, the 
Community Land Model, and the Variable Infiltration Capacity) operat-
ing at global resolutions spanning from 2.5° to 1 km. With a temporal 
resolution of 3-hourly, data is subsequently aggregated to yield monthly 
products. GLDAS soil moisture data is particularly well-suited as a 
reference owing to its accuracy and extensive global coverage. Using 
advanced land surface modeling and data assimilation techniques, 
GLDAS achieves optimal generation of land surface state and flux 
fields. For this study, the GLDAS Noah Land Surface Model (LSM) L4 
monthly 0.25 × 0.25° version 2.1 (GLDAS_NOAH025_M) data set, 
capturing top 10-cm soil moisture, serves as the reference. This data set, 
reprocessed in January 2020, supersedes its predecessor and is obtained 
from the main production stream. The archived data is disseminated in 
NetCDF format. Importantly, the GLDAS-2.1 products surpass their 
corresponding GLDAS-1 counterparts (Beaudoing and Rodell 2019).

The TWS derived from GRACE and its Follow-on (GRACE-FO) 
stands as a hydrological drought indicator, measuring alterations in 
water thickness near the Earth's surface. Launched in March 2002, 
GRACE-FO furnishes temporal gravity field measurements on a global 
scale. Designed to track Earth's mass shifts and alterations, particularly 
those associated with water, GRACE-FO, launched on 21 May 2018, 
plays a pivotal role in groundwater monitoring. Given the exacerbation 
of drought conditions due to climate change, there is a heightened reli-
ance on groundwater for various purposes, notably agriculture, neces-
sitating effective monitoring. The data set used for this study, GRACE/
GRACE-FO RL06 v02 Mascon Grids with Corrections Applied, origi-
nates from the Center for Space Research (CSR) in Austin, Texas. This 
data set spans from April 2002 to December 2022 and is presented in 
NetCDF format (Save et al. 2016). 

 Rainfall data serves as a basis for comparative analysis with soil 
moisture content variations. This data set comprises three distinct 
products, each characterized by varying temporal resolutions: three-
hourly (3B42), daily (3B42 derived), and monthly (3B43). The spatial 

resolution for these products is 0.25° × 0.25°, spanning latitudes from 
50° S to 50° N. For this study, solely the TRMM 3B43 product for the 
2018-2019 time frame is used, representing the monthly mean of the 
TRMM 3B42 data set (Tropical Rainfall Measuring Mission 2011).

Additionally, the MODIS16A2 version 6 evapotranspiration data 
set is harnessed, originating from the NASA/EOS project. This data 
set aids in the estimation of land surface evapotranspiration through 
the assimilation of MODIS and global meteorological data. The data 
set encompasses transpiration by vegetation, as well as evaporation 
from soil and canopy surfaces. It plays a pivotal role in furnishing 
information pertinent to regional water and energy balances, soil water 
statuses, and water resource management. Moreover, the long-term 
evapotranspiration data assist in quantifying the effects of shifts in land 
use, ecosystems, and climate on regional water resources and land sur-
face energy changes (https://lpdaac.usgs.gov/products/mod16a2v006/). 
The product includes 8-day, monthly, and annual global ET, latent heat 
flux (LE), potential evapotranspiration (PET), potential latent heat flux 
(PLE), and 8-day, annual quality control (ET_QC) at a spatial resolu-
tion of 500 m (https://lpdaac.usgs.gov/products/mod16a2v006/).

Selected for their critical roles as hydrometeorological variables 
and drought indicators, the inclusion of precipitation, ET, and TWS 
lends comprehensive insights to this study. Furthermore, all the data 
used in this study and summarized in Table 1 are selected based on 
their availability over the study period for the study area.

Methods
In this paper, the capability of SMAP and CYGNSS soil moisture in 
drought prediction was evaluated. This was achieved through com-
parison and validation against GLDAS (reference soil moisture) and a 
Southern Africa drought map (considered as a ground truth map), and 
the estimated soil moisture obtained from some well known hydro-
logical variables. First, for the estimate of the soil moisture, the MLR 
technique is harnessed to establish a robust relationship between inde-
pendent variables (P, ET, and TWS) and the target variable (predicted 
soil moisture). MLR leverages the principle of least squares, seeking 
the best fit that minimizes the sum of squared residuals, thereby yield-
ing an effective means of characterizing the association. The process of 
comparing predictors and validating their effectiveness encompasses 
two crucial steps. Initially, the selected predictors (basically P, ET, and 
TWS) were systematically plotted and evaluated in relation to each oth-
er. This analysis enables the assessment of their temporal evolution and 
variations. Subsequently, the focus shifts toward the prediction of soil 
moisture, a task accomplished via the application of the MLR model. In 
the domain of prediction, linear regression remains a stalwart approach 
in the realm of statistical prediction within hydrology and climatology. 
Its application is well-established, particularly owing to its traditional 
nature and recognized utility. Predictive skill can be performed at 1, 3, 
or 6 months lead time; however, for the drought prediction, the predic-
tive skill of the indicators such the Standardized Precipitation Index 
(SPI), the standardized SSI, and the Multivariate Standardized Drought 
Index (MSDI) gradually decayed with the increasing lead time (Wang 
et al. 2020). A basic formulation of the MLR model for hydroclimatic 
variables prediction with respect to two predictors X and Z can be 
expressed at 1 month lead as shown in Equation 1:

	 Yt = AXt–1 + BZt–1 + εt	 (1)

Table 1. Data used in the study.
Sensors and Products Parameter Drought Type Year Spatial Resolution Temporal Resolution

MOD16A2 V006 (MODIS) ET Ecological drought 2018–2019 500 m 8 day

L3SMAP-L-BAND RADIOMETER (SMAP)

SM Agricultural drought

2018–2019 9 km Daily

CYGNSS Level 3 (CYGNSS) 2018–2019 0.3° × 0.37° 1 day

GLDAS (NOAH model) 2018–2019 0.25° × 0.25° Monthly 

GRACE and GRACE-FO  TWS (LWE) Hydrological drought 2018–2019 1° × 1° Daily

TRMM (TMPA/3B43) Rainfall        Meteorological drought 2018–2019 0.25° × 0.25° Monthly

ET = evapotranspiration; SM = soil moisture; TWS = total water storage. LWE = Liquid water equivalent.
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where Yt is the predictand (or dependent variable) in the form of soil 
moisture series (considered as drought indicator in this study), Xt–1 and Zt–1 
are covariates (or independent variables) that provide the predictive infor-
mation of Yt, A and B are regression coefficients, and εt is the error term. 

Through the application of linear regression, a fundamental rela-
tionship emerges between the predicted variable (here soil moisture) 
and other influential variables, often referred to as predictors. This 
relationship serves to furnish valuable predictive insights into the 
development of soil moisture. In order to obtain the values of the 
constant (0.068) and coefficients (13.53, 0.004, and −0.0003) for 
precipitation (P), ET, and TWS, respectively, 100 random points were 
sampled from each monthly image. Only those points with valid values 
for each month and all the used parameters were selected. In the final 
step, MLR was calculated between the reference data (GLDAS) and 
the influencing parameters, namely, P, ET, and TWS. In essence, the re-
gression model encapsulates the interplay between the anticipated soil 
moisture and a spectrum of predictors (P, ET, and TWS) encapsulated 
within Equation 2:

	 SMest = 0.068 + 13.53P + 0.004ET – 0.0003TWS	 (2)

In this formula, SMest denotes the predicted soil moisture, P signi-
fies precipitation, ET represents evapotranspiration, and TWS encap-
sulates the total water storage. Given the negligible effect of TWS, a 
simplified rendition of the formula takes the following form:

	 SMest = 0.068 + 13.53P + 0.004ET	 (3)

It is noteworthy that the MLR method’s consistency in generating 
reliable outcomes persists across varying time spans of input data. To 
discern their relative significance in influencing soil moisture deficits, a 
careful analysis of the regression coefficients highlights the contribution 
of each factor. In this context, precipitation emerges as the most pivotal 
variable, significantly shaping soil moisture alterations, followed by 
evapotranspiration. Conversely, the contribution of TWS remains notably 
insignificant, which may be due to its delay in response to soil moisture 
variations. For instance, Houborg et al. (2012) noted that integrating 
GRACE TWS data into their catchment land surface model yielded no 
statistically significant enhancement in soil moisture estimates.

Second, the comparative analysis of SMAP and CYGNSS 
soil moistures vis-à-vis other soil moisture data sets followed a 
comprehensive methodology. Initially, box plots and histograms 
are used to delineate the distribution of data across the variables. 
Subsequently, soil moistures are plotted on a temporal evolution 

basis to depict their changes in temporal variations. Furthermore, 
scatter plots are used to visually illustrate the relationships between 
variables, complemented by the computation of Pearson correlations 
for quantitative insights. 

Last, the validation of SMAP and CYGNSS soil moistures are used 
to find the alignment with the Southern Africa drought map (GDACS 
2020) considered as the ground truth data for the same temporal span. 
However, before all the data were brought to a common spatial resolu-
tion and to ensure data reliability, the effect of seasonality is factored 
out from the soil moisture readings. In fact, given the inherent dif-
ferences in spatial and temporal resolutions among the data sets used 
in this study, the bilinear resampling method within R programming 
was applied to standardize all data sets to a consistent 1° × 1° spatial 
resolution. This method calculates a pixel’s value by considering a 
weighted distance average from its four adjacent pixels. Following this 
resampling process, all data sets were further adjusted to a uniform 
monthly temporal resolution for further analysis. The effect of season-
ality was removed from the data using Deseason function of Matlab in 
order to avoid leading to false correlations.

Results and Analysis
Temporal Variability of TWS, Precipitation, and ET
Figure 4 represents the original data with ranges, and Figure 5 shows 
the temporal variations of TWS, Precipitation, and ET. As can be seen, 

Figure 4. Original data with ranges: precipitation (m), evapotranspiration (ET) (mm), and total water storage (TWS) (cm).

Figure 5. Temporal variations in change of total water storage (TWS) 
(cm), precipitation (m) and evapotranspiration (ET) (mm).
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the variables follow each other on temporal basis, even though shifts 
are observed, especially, with TWS. The observed shifts could be 
attributed to several factors related to hydrological and meteorological 
processes. For instance, it takes time for precipitation to infiltrate into 
the soil and contribute to groundwater storage (TWS). Similarly, the 
effect of changes in ET on TWS might not be immediately apparent 
due to varying rates of evapotranspiration in different regions. 
Moreover, the interplay between precipitation, ET, and TWS depends 
on the hydrological connectivity of the region and local topography. 
Some areas might have rapid drainage systems that respond quickly 
to precipitation, while others might have slower drainage, leading 
to delayed responses in TWS. Groundwater recharge and discharge 
systems often act as buffers, storing water for longer periods. Changes 
in precipitation and ET can affect groundwater recharge and discharge 
rates, leading to shifts in TWS that might not directly correspond to 
precipitation patterns. In addition, different seasons and large-scale 
climate oscillations can exhibit distinct patterns of precipitation and 
ET. Seasonal variations in vegetation growth and ET rates can affect 
the overall water balance and consequently affect TWS.

To pinpoint the exact cause of the observed shifts, it is important 
to analyze the local hydrological conditions, land characteristics, and 
other relevant factors specific to the study area. Incorporating more 
data, conducting detailed hydrological modeling, and considering 
additional variables could help provide a clearer understanding of the 
reasons behind the observed shifts.

Figure 6 represents the MLR-predicted soil moisture depicting pro-
nounced seasonal evolution and variation. The oscillations are evident 
with minimal and maximal soil moisture values between 0.12 and 0.24, 
respectively, for both years. MLR soil moisture and the predictors 
temporal variations approximately fit well, illustrating the reliability 
of the method used. To validate the result, MLR soil will, in turn, be 
compared with the reference soil moisture (GLDAS) and together with 
SMAP and CYGNSS soil moisture.

Figure 6. Temporal evolution of multiple linear regression (MLR) 
estimate soil moisture (SM) (m3/m3).

Box Plots and Histograms of the Soil Moistures
Figure 7 presents a box plot that effectively portrays the distribution 
characteristics of the SMAP, CYGNSS, GLDAS, and predicted SM 
data sets. The box plot provides a comprehensive depiction of the 
central tendency, spread, and outliers of the data. The central segment 
of the box corresponds to the median, signifying the point where 50% 
of the data resides. The median line traversing the box demonstrates 
the distribution of data values relative to this median. The whiskers, 
extending both upward and downward, capture data values lying 
beyond the median, offering insights into the data’s dispersion. The 
interquartile range (IQR), delineated by the span from the 1st quartile 
(Q1) to the 3rd quartile (Q3), showcases the extent of data scattering 
between each sample. The length of the box is indicative of data 
dispersion, with a lengthier box implying greater dispersion, while a 
compact box signifies less divergence among data points. 

Figure 7. Boxes plots of Soil Moisture Active Passive (SMAP) 
(m3/m3), Cyclone Global Navigation Satellite System (CYGNSS) 
(cm3/cm3), multiple linear regression (MLR) predicted (m3/m3), 
and Global Land Data Assimilation System (GLDAS) (m3/m3) soil 
moistures. IQR = interquartile range. 

Figure 8 features histogram plots, shedding light on the frequency 
distribution of soil moistures. These histograms illustrate that a 
substantial concentration of counts predominantly aligns on the lower 
left side, below the soil moisture value of 0.2, denoting a propensity 
for drier conditions. Notably, the entire ensemble of figures exhibits a 
distinct right-skewed distribution, underscoring a trend in which values 
are concentrated toward the lower end of the scale with a tail extending 
to the right. Overall these distribution characteristics of soil moisture 
data can help in drought prediction.

Figure 8. Histogram of Soil Moisture Active Passive (SMAP), 
Cyclone Global Navigation Satellite System (CYGNSS), multiple 
linear regression (MLR)−predicted, and Global Land Data 
Assimilation System (GLDAS) soil moistures.
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Temporal Evolution of Different Soil Moistures
To assess the credibility of SMAP and CYGNSS SM data, a compara-
tive analysis is conducted against both the predicted and reference SM 
data sets. Figure 9 vividly captures the temporal dynamics of these 
data sets, revealing distinctive characteristics within their variations. 
Notably, discernible oscillations are evident in the predicted and 
GLDAS data, both exhibiting analogous patterns of variability. In con-
trast, the SMAP and CYGNSS data manifest a marked divergence from 
this trend. While the maximum SM values of SMAP and CYGNSS 
align closely, it is noteworthy that SMAP displays an intriguing behav-
ior by offering consistently lower minimum values. In fact, SMAP’s 
minimum values extend to a remarkable extent, mirroring the minima 
observed in the GLDAS data set. This nuanced behavior underscores 
SMAP’s capacity to capture not only elevated SM values but also the 
lower extremes, encompassing the range of variability spanned by the 
GLDAS reference data set. This capacity may be explained by the data 
quality and the measurement methods. Certain data sets exhibit more 
pronounced seasonal variations, and this difference in variation illus-
trates their capability in drought monitoring and prediction.

Figure 9. Temporal evolution of Soil Moisture Active Passive 
(SMAP) (m3/m3), Cyclone Global Navigation Satellite System 
(CYGNSS) (cm3/cm3), Global Land Data Assimilation System 
(GLDAS) (m3/m3), and the predicted soil moistures (SM) (m3/m3).

Pearson Correlations Between Different Soil Moistures
Figure 10 shows the scatter plots and Pearson correlations (r) between 
different soil moistures with r = 0.78, r = 0.61, and r = 0.84 between 
GLDAS and SMAP, GLDAS and CYGNSS, and GLDAS and the 
estimated SM, respectively, as reported in Table 2. These strong or 
moderate correlations signify in terms of the reliability and accuracy 

of SMAP, CYGNSS, and MLR-predicted soil moisture data in relation 
to the reference data set (GLDAS). As can be seen, MLR SM against 
GLDAS exhibits strong correlation, followed by SMAP and GLDAS, 
and last CYGNSS and GLDAS. The degree of consistency of the cor-
relations implies the reliability of the data sets and their capability in 
drought monitoring and prediction.

Table 2. Pearson correlation (r).
GLDAS SM

SMAP SM 0.78

CYGNSS SM 0.61

MLR SM 0.84

CYGNSS = Cyclone Global Navigation Satellite System; GLDAS = Global 
Land Data Assimilation System; MLR = multiple linear regression; SM = soil 
moisture; SMAP = Soil Moisture Active Passive.

Validation of SMAP and CYGNSS Soil Moistures
Figure 11 offers a compelling exploration of the spatial progression of 
both arid and humid conditions, presenting a side-by-side comparison 
of SMAP and CYGNSS SM spatial maps with those of GLDAS 
and the projected SM for 2018 and 2019. The insight derived from 
these visualizations is pivotal for understanding the convergence 
and divergence in spatial distribution. In tandem with this, Figure 12 
presents the FAO drought map, which serves as a referential baseline 
representing authentic values. Monthly rainfall, maximum dry spell in 
the month, date of start of the growing season (SoS), NDVI (monthly 
average), and LST (monthly average) are the variables used and 
weighted to obtain the drought map, which is some form of anomaly 
of the standardized variable. Strikingly, a coherent pattern emerges, 
closely aligning the FAO drought map with the spatial depiction of 
the study period. Notably, as one delves into the comparative analysis 
of these spatial maps, a distinct spatial distinction becomes evident, 
revealing the accentuation of dry conditions within the southwestern 
regions in contrast to other locales.

Discussion
The three key explanatory variables (precipitation, ET, and TWS) 
exhibit robust autocorrelation (see Figure 5), underscoring their reli-
ability in predicting soil moisture, which demonstrated its reliability 
in drought predictions for this study. Noteworthy shifts identified in 
TWS behavior can be attributed to the sensitivity of groundwater to 
prolonged dry periods. A deeper exploration reveals that GRACE TWS 
exhibits gradual variations, in contrast to the swift responsiveness of 
soil moisture to atmospheric dynamics.

Figure 10. Scatter plots and correlation between: (a) Soil Moisture Active Passive (SMAP) (m3/m3) and Global Land Data Assimilation System 
(GLDAS) (m3/m3). (b) Cyclone Global Navigation Satellite System (CYGNSS) (cm3/cm3) and GLDAS (m3/m3). (c) Multiple linear regression 
(MLR)−predicted soil moistures (SM) (m3/m3) and GLDAS (m3/m3).
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The drought indicators used (namely, precipitation and ET) hold 
sensitivity to transient dry conditions, enabling their effective use in 
soil moisture estimation. The congruence in spatial and seasonal trends 
between the estimated soil moisture and other data sets underscores 
its validity. Using the MLR approach to forecast soil moisture change 
(a critical variable for agricultural drought monitoring and prediction) 
yielded favorable outcomes. The MLR technique effectively 
captures the intricate interplay of inputs and outputs, reflecting the 
hydrophysical quantity of soil moisture deficit, encapsulating elements 
such as precipitation, evapotranspiration, infiltration, and runoff.

Figure 9 illuminates the temporal profiles of SMAP, CYGNSS, 
GLDAS, and the estimated soil moisture, revealing an admirable 
alignment that underscores the precision of the MLR model. This 
synchronization further extends to SMAP and CYGNSS soil mois-
tures, signifying their potential as pivotal parameters for drought 
prediction, especially when corroborated against the reference data set, 
GLDAS usually used in drought prediction. Additionally, the graphical 
representations (box plots and histograms) unveil an overall normal 
data distribution, albeit with certain disparities discerned in SMAP and 
estimated soil moisture distributions.

Figure 10 accentuates this narrative through scatter plots and 
Pearson correlation coefficients (r). Impressively robust correlation 
coefficients (r = 0.78 between GLDAS and SMAP, r = 0.61 between 
GLDAS and CYGNSS, and r = 0.84 between GLDAS and predicted 
SM) fortify the credibility of the soil moisture data, particularly the 
predicted variant against the reference.

Spatial appraisal of variables from 2018 to 2019 demonstrates 
uniform patterns during this period (see Figure 11), corroborated even 
against the Southern African drought map of the same period (see 
Figure 12). The prevalence of dry conditions in southwest regions 
stems directly from precipitation deficits, a well-acknowledged driving 
factor. Evident from the histograms (see Figure 8), soil moisture values 
below 0.2 amass on the left side, indicative of the arid conditions 
that characterized the study area during this period. This arrangement 
accounts for the right-skewed nature of the histograms. Notably, the 
spatial mapping indicates that calculations at each grid cell are inde-
pendent, further enhancing the robustness of the analysis.

Conclusions
This study underscores the valuable contributions of SMAP and 
CYGNSS soil moistures in the realm of drought prediction, particu-
larly in the context of short-term dry conditions. The comprehensive 
assessment and comparison of SMAP and CYGNSS with other data 
sets reveal not only similar spatiotemporal patterns but also robust 
correlations, solidifying their relevance in drought prediction efforts. 
Consequently, leveraging SMAP and CYGNSS soil moisture data for 
forecasting dry conditions emerges as a logical and effective strategy.

Figure 11. Spatial maps of Soil Moisture Active Passive (SMAP) (m3/m3), Cyclone Global Navigation Satellite System (CYGNSS) (cm3/cm3), 
Global Land Data Assimilation System (GLDAS) (m3/m3), and multiple linear regression (MLR)−predicted soil moistures (SM) (m3/m3).

Figure 12. Reference map of drought spatial distribution of Southern 
Africa of the year 2018–2019 (GDACS 2020).
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The utility of accurately predicted dry conditions is undeniably 
significant, offering a pivotal tool to facilitate informed decision-
making and proactive mitigation strategies, especially in the lead-up 
to crucial growing seasons. However, it is vital to acknowledge that 
soil moisture, a pivotal indicator for agricultural drought, exhibits 
pronounced spatiotemporal variability. This intricacy poses certain 
limitations on the precision of change predictions, especially 
under extreme conditions. Consequently, predicting these nuanced 
parameters remains a notable challenge. Furthermore, the development 
of drought is characterized by a gradual progression, a stark contrast 
to the rapid onset of events like floods and hurricanes. This intrinsic 
nature of drought complicates its early identification and prediction, 
making it an intricate task that requires meticulous analysis and robust 
methodologies. Additionally, the multifaceted hydrological processes 
inherent to drought further elevate the complexity of prediction 
endeavors.

In culmination, this study serves as a compelling testament to the 
reliable capabilities of SMAP and CYGNSS in both monitoring and 
predicting drought events. The insights garnered from spatial mapping 
distinctly underscore SMAP’s heightened sensitivity to drought condi-
tions, closely pursued by CYGNSS. As the field of drought prediction 
continues to evolve, the integration of advanced technologies and 
methodologies such as those used here will undoubtedly contribute to 
enhancing our understanding and proactive management of this critical 
natural phenomenon.
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