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Abstract
Drought, a highly detrimental natural disaster, poses significant threats to both human pop-
ulations, wildlife, and vegetation. Traditional methods of monitoring soil moisture levels 
rely on ground-based measurements from meteorological stations. However, these stations 
often lack comprehensive coverage in certain agricultural areas, necessitating the use of 
alternative methods such as satellite remote sensing. This technique provides a reliable 
means of measuring soil moisture, a critical factor in effective agricultural management. 
This paper investigates variations in soil moisture and drought using data from the Cyclone 
Global Navigation Satellite System (CYGNSS) and the Soil Moisture Active and Passive 
(SMAP) system. To evaluate the accuracy of these data products, we compared both data-
sets with the Global Land Data Assimilation System (GLDAS) NOAH model from 2018 
to 2019. Our findings reveal a strong correlation between the datasets and the model, with 
Pearson correlation coefficients (r) and Root Mean Square Errors (RMSE) of approxi-
mately r = 0.98 and RMSE = 0.03 for SMAP, and r = 0.97 and RMSE = 0.02 for CYGNSS, 
respectively. We further compared these measurement datasets with drought indicators 
such as the Standardized Precipitation Index over three months (SPI3), the Normalized 
Difference Vegetation Index (NDVI), and Total Water Storage (TWS). The correlation 
coefficients between SMAP and the three indicators (NDVI, SPI3, and TWS) were 0.93, 
0.84, and 0.047, respectively, while the coefficients between CYGNSS and the same indi-
cators were 0.86, 0.78, and 0.56, respectively. All the variables also exhibited significant 
p-values. Despite minor differences, the results demonstrate excellent agreement. Our find-
ings underscore the sensitivity of space-based sensors to drought conditions, highlighting 
their effectiveness as tools for detecting and monitoring drought (e.g. agricultural drought), 
particularly in the short term.
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1  Introduction

Drought, a formidable natural disaster, can wreak havoc on human populations, wild-
life, and vegetation. In the agricultural sector, it can lead to a decrease in crop yield and 
livestock (Parry 2007), while in forestry, it can stunt tree growth and escalate the inci-
dence of wildfires (Field 2012). These effects can precipitate economic and financial chal-
lenges, particularly in low-income countries (Godfray et  al. 2010). Over recent decades, 
severe droughts in East Africa (2010–2011) and Southern Africa (1994–1995, 2015–2016, 
2018–2019) have inflicted substantial damage on societies and ecosystems (Seager et al. 
2015). Consequently, the monitoring and prediction of droughts can help alleviate their 
impacts by providing early warnings and contributing significantly to regional water 
resource management and economic development.

Traditional drought monitoring methods encompass ground-based measurements or 
grid interpolations of soil moisture from meteorological and agricultural perspectives 
(Sheffield et al. 2012). However, many agricultural areas lack meteorological stations, and 
even where these stations exist, their numbers are often insufficient to provide reliable spa-
tiotemporal variability data (Easterling 2013). Moreover, data from different observation 
stations may not share the same record extents or data quality, complicating drought analy-
sis (AghaKouchak et al. 2012).

Fortunately, satellite remote sensing has made significant strides in drought monitor-
ing in recent years. This method enables the observation of hydrological variables such as 
precipitation (Sorooshian et al. 2011), soil moisture (Entekhabi et al. 2004), evapotranspi-
ration (Anderson et  al. 2011b), Total Water Storage (TWS) (AghaKouchak et  al. 2015), 
groundwater storage (Rodell et al. 2002), and snow (Kongoli et al. 2012), among others.

Satellite remote sensing, especially with microwave technology (SMOS: Soil Moisture 
and Ocean Salinity and SMAP: Soil Moisture Active and Passive) and the recently devel-
oped Cyclone Global Navigation Satellite System (CYGNSS), is a potent tool for track-
ing changes in soil moisture. This parameter is crucial for modeling biophysical processes, 
and its accurate monitoring can enhance rainfall estimation for flood forecasting (Brocca 
et  al. 2010; Koster et  al. 2010), drought monitoring or prediction (Rahmani et  al. 2016; 
Enenkel et  al. 2016; Sánchez et  al. 2016) landslide prediction (Brocca et  al. 2012; Bit-
telli et  al. 2012), and soil erosion prediction (Singh and Thompson 2016). As such, soil 
moisture appears to be the most appropriate variable for agricultural strategies, measur-
ing factors such as soil moisture intensity, duration, and spatial extent. Indeed, agricultural 
drought results from inadequate moisture to support crop growth. The technique of soil 
moisture remote sensing gained prominence with the launch of the SMAP mission in 2015 
(Entekhabi et  al. 2010a). To produce data with relatively high spatial (3 km, 9 km, and 
36 km) and temporal resolution (2–3 days), it combines high spatial resolution active radar 
and coarse-resolution, yet highly sensitive, passive radiometer observations (Entekhabi 
et al. 2010a).

Recently, Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged 
as a promising tool for soil moisture monitoring. The United States (GPS NAVSTAR), 
Europe (Galileo), Russia (GLONASS), and China (BeiDou) are among the GNSS constel-
lations targeting navigation, positioning, and time synchronization (Hofmann-Wellenhof 
et al. 2008). GNSS-R measures their reflected signals on Earth’s surface, which are used 
in estimating geophysical parameters such as soil moisture, although the current GNSS-R 
missions were originally designed for ocean altitudes, winds, and tropical cyclone observa-
tions (Jia et al. 2017). The UK Disaster Monitoring Constellation (UK-DMC) mission was 
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the first to carry GNSS-R in 2003 (Gleason et al. 2005), followed by the launch of Tech-
DemoSat-1 in July 2014, the 3CAT-2 of the Polytechnic University of Catalonia (UPC) 
in August 2016, NASA’s Cyclone GNSS (CYGNSS) in December 2016, and the GEROS 
(GNSS REflectometry, Radio Occultation, and Scatterometry) experiment of the European 
Space Agency (ESA). The Bufeng-1 A and B satellites, whose mission targeted sea-surface 
wind monitoring, were successfully deployed in June 2019 (Wu et al. 2021a, b).

Numerous indices based on soil moisture have been developed, including the Standard-
ized Soil Moisture Index (SSI) (Hao et al. 2013), the Soil Moisture Percentile (Sheffield 
et  al. 2004), the Soil Water Index (SWI), the Soil Water Deficit Index (SWDI), and the 
Multivariate Soil Moisture Deficit Index (MSDI). Soil moisture can be derived either from 
Land Surface Model (LSM) simulations or from satellite measurement data. As noted by 
AghaKouchak (2014a), soil moisture is a vital variable for persistent drought monitoring. 
Satellite sensors for soil moisture include passive microwave (Njoku et  al. 2003), active 
microwave (Takada et al. 2009), or a combination of both (Kim et al., 2012). The technique 
to estimate soil moisture utilizes the difference in permittivity between liquid water and 
dry soil. Microwave observations are limited to the top 2–5 cm of soil (Entekhabi et al., 
2010a). However, for the root zone, a suitable LSM must be coupled with the microwave 
(Reichle et  al. 2004). For further details on optical, thermal, passive, and active micro-
wave soil moisture estimation, refer to Wang et al. (2009) or Edokossi et al. (2020), among 
others.

Recent studies have demonstrated the potential of SMAP data for large-scale soil mois-
ture monitoring. For instance, Eswar et  al. (2018) compared soil moisture from SMAP 
with modeled US Drought Monitor (UDM) and Standardized Precipitation Index (SPI) 
data. The results showed that SMAP observations accurately captured changes in drought 
intensity. Bai et al. (2018) estimated the Soil Water Deficit Index (SWDI) from SMAP for 
mainland China and demonstrated its effectiveness in detecting drought conditions. Agha-
Kouchak et al. (2015) used Water Cycle Multi-Mission Observation Strategy (WACMOS) 
data to monitor drought in the Horn of Africa. Drought monitoring and prediction have 
been improved by integrating Advanced Microwave Scanning Radiometer-Earth Observ-
ing System (AMSR-E) data into real-time US Department of Agriculture International Pro-
duction Assessment Division (USDA IPAD) soil models (Bolten et al. 2010). Furthermore, 
the Climate Change Initiative (CCI) can be used to monitor agricultural drought (Wagner 
et al. 2012). The CCI datasets can be combined with LSM to generate long-term reliable 
soil moisture products (Reichle et al. 2004).

The Standardized Precipitation Index (SPI) and the Standardized Precipitation Evap-
otranspiration Index (SPEI) are two indices developed for drought monitoring. The SPI, 
which ranges from SPI1 to SPI48, is based solely on precipitation and corresponds to dif-
ferent time scales of drought monitoring. Conversely, the SPEI considers both precipita-
tion and evapotranspiration. This research focuses on the SPI (specifically SPI3) due to its 
established significance and broad applicability in drought monitoring. The SPEI, a rela-
tively recent meteorological drought index introduced by Vicente-Serrano et al. (2010), is a 
multi-scalar index that includes the climatic water balance, i.e., the difference between pre-
cipitation and evapotranspiration, making it more sensitive to temperature changes (Begue-
ría et al. 2014).

Recent scientific investigations have consistently highlighted the efficiency and rel-
evance of SPI3 in the context of agricultural drought monitoring. These studies empha-
size that SPI3 is particularly adept at capturing abrupt changes in precipitation patterns 
and their swift influence on drought conditions. It is generally agreed that short time scale 
SPI (1 to 3 months) may be associated with soil moisture and better describes agricultural 
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drought (Raziei et  al. 2009; Vicente-Serrano et  al. 2005). With the progressive develop-
ment of drought propagation studies, the SPI3 and SPI6 indicators have been accepted 
for agricultural or hydrological drought studies due to the propagation of meteorologi-
cal drought to agricultural or hydrological drought over a period of around 3 to 6 months 
(Forootan et al. 2019). It has been suggested that the SPI3 index is better suited for identi-
fying drought events that ultimately affect agricultural practices (Gebrehiwot et al. 2011). 
Studies by Ji and Peters (2003) and Rossi and Niemeyer (2012) found that SPI3 is best 
correlated with vegetation response, making it ideal for identifying agricultural drought. 
Therefore, in this study, the SPI3 index has been chosen for comparisons with SMAP and 
CYGNSS soil moisture to evaluate their capability in drought monitoring.

This study aims at demonstrating the capability, reliability, and usefulness of the direct 
use of soil moisture data for drought monitoring in Southern Africa. We evaluate the capa-
bility and the efficiency of SMAP and CYGNSS moisture datasets for drought monitor-
ing during 2018–2019. We employ the Global Land Data Assimilation System (GLDAS) 
model as a reference value for validation and detection of deviations or biases. Moreover, 
the spatiotemporal variations observed by SMAP and CYGNSS are compared to well-
known drought indicators such as SPI3, NDVI, and TWS (LWE = Liquid Water Equiva-
lence). The variability observed in soil moisture is analyzed to evaluate the performance 
in drought detection and monitoring. We compare the spatial distribution of SMAP and 
CYGNSS soil moisture data with the Southern Africa drought hotspots maps.

2 � Data and methods

2.1 � Study area

The Southern Africa region was chosen as the study area due to the recurring droughts that 
significantly impact the lives of its inhabitants. During 1994–1995, most Southern African 
countries experienced severe droughts. In the north-western part of Zimbabwe, the rain-
fall during the 1994–1995 season was among the lowest ever recorded. The 2015–2016 
El Niño event resulted in life-threatening weather conditions in many countries. Recently, 
a similar situation was faced during 2018 to 2020 (www.​gdacs.​org), and the concurrent 
availability of SMAP and CYGNSS data presents an unprecedented opportunity to investi-
gate the geophysical processes during this drought period. Figure 1 displays the major veg-
etation biomes (Lawal et al. 2019) of the study area. An arid climate can be observed in the 
West, with less severity in the East. The limits of the humid climate are at approximately 
20 degrees latitude South.

2.2 � Data

Satellite Soil Moisture (SM) observations between 2018–2019, derived from the Soil Mois-
ture Active and Passive (SMAP) and Cyclone Global Navigation Satellite System (CYG-
NSS), were utilized in this research. Other data such as the Standardized Precipitation 
Index over three months (SPI3), Normalized Difference Vegetation Index (NDVI), Total 
Water Storage (TWS) in Liquid Water Equivalent (LWE), soil moisture from the Global 
Land Data Assimilation System (GLDAS) Noah model, and rainfall data were also used.

The SMAP mission, launched by the National Aeronautics Space Agency (NASA) 
in January 2015, provides global measurements of soil moisture and freeze/thaw state 

http://www.gdacs.org
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(Entekhabi et  al. 2010a). The SMAP mission comprises both an L-band radar and an 
L-band radiometer, enabling global mapping of soil moisture at a 10 km spatial resolution 
with a 2–3 day revisit time under both clear and cloudy sky conditions. By integrating radi-
ometer and radar measurements, SMAP provides high spatial resolution soil moisture data. 
The SMAP 10 km soil moisture data is obtained by combining higher accuracy but coarser 
spatial resolution (40 km) radiometer-based soil moisture retrieval with higher resolution 
radar data (1–3 km) that have lower retrieval accuracy. Moreover, the integration of these 
two types of data allows soil moisture to be estimated under a wider range of vegetation 
conditions (Entekhabi et  al. 2010a). For SMAP data, we used the SMAP Enhanced L3 
version 4 SM in this work (https://​nsidc.​org/​data/​SPL3S​MAP/​versi​ons/3). The L3SMAP 
is a composite of daily estimates of global land surface conditions. The main parameter is 
surface soil moisture (approximately the top 5 cm on average in cm3/cm3) presented on the 
global 9 km EASE-Grid 2.0 in Geotiff format.

The CYGNSS mission performs surface remote sensing with the target of measuring 
ocean surface wind under different weather conditions. It consists of 8 microsatellites with 
an average revisit time of seven hours and an inclination of 35° from the equator, which 
allows it to make measurements between approximately 38° N and 38° S latitude. For the 
CYGNSS data, we employed Level 3 version 1.0 soil moisture between 0–5 cm depth with 
a spatial resolution of 0.3° (Latitude) × 0.37° (Longitude) (https://​podaac.​jpl.​nasa.​gov/​
datas​et/​CYGNSS_​L3_​SOIL_​MOIST​URE_​V1.0). The data are in volumetric water content 
(cm3/cm3) and archived in daily files in netCDF-4 format.

The GLDAS model includes four land surface models: Mosaic, Noah, the Community 
Land Model (CLM), and the Variable Infiltration Capacity. The GLDAS soil moisture data 
is used as a reference value due to its accuracy and global coverage. In fact, GLDAS uses 

Fig. 1   Map of the study area with Major vegetation biomes (Lawal et al. 2019)

https://nsidc.org/data/SPL3SMAP/versions/3
https://podaac.jpl.nasa.gov/dataset/CYGNSS_L3_SOIL_MOISTURE_V1.0
https://podaac.jpl.nasa.gov/dataset/CYGNSS_L3_SOIL_MOISTURE_V1.0
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advanced land surface modeling along with data assimilation techniques to provide optimal 
land surface states and fluxes. The monthly GLDAS Noah LSM L4 at 0.25 × 0.25° resolution 
(version 2.1, GLDAS_NOAH025_M) is used to provide the top 10-cm soil moisture. This 
data product, reprocessed in January 2020, is obtained from the main production stream and it 
is a replacement for its previous version. The data is archived and distributed in NetCDF for-
mat. The GLDAS-2.1 products supersede their corresponding GLDAS-1products (https://​disc.​
gsfc.​nasa.​gov/​datas​ets/​GLDAS_​NOAH0​25_M_​2.0/​summa​ry).

Global Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices are 
designed to provide consistent spatial and temporal comparisons of vegetation conditions. In 
this work, we used the global MOD13A3 monthly Normalized Difference Vegetation Index 
(NDVI), an ecological drought indicator, data at a 1-km spatial resolution as a gridded Level-3 
product in the Sinusoidal projection (https://​modis.​gsfc.​nasa.​gov/​data/​datap​rod/).

The Standardized Precipitation Index (SPI) is an indicator of meteorological drought based 
solely on precipitation and can be utilized to study global agricultural droughts, hydrology, 
and ecosystem impact studies. SPI ranges from 1 to 48 months, corresponding to different pre-
cipitation accumulation periods (1, 3, 6, 9, …, 48). SPI for short accumulation periods (SPI1 
to SPI3) indicates immediate impacts such as soil moisture reduction. For this study, SPI3 was 
selected due to its wide recognition and utilization in the scientific community for agricul-
tural drought study, its strong correlation with vegetation response, and the availability of the 
data for the entire study period. The SPI3 used in this study is generated by The International 
Research Institute (IRI/LDEO) Climate Data Library, University of Columbia (https://​iridl.​
ldeo.​colum​bia.​edu/). The SPI3 values are the monthly precipitation at 1.0° latitude/longitude 
resolution calculated from a dataset that combines the retrospective and real-time CPC Gauge-
OLR Blended (GOB) daily precipitation analysis for the globe, accumulated to monthly 
(https://​iridl.​ldeo.​colum​bia.​edu/).

Gravity Recovery and Climate Experiment (GRACE) and Follow-on (GRACE-FO) Total 
Water Storage (TWS) indices are considered as hydrological drought indicators, as these 
measure the change in water thickness near the Earth’s surface. The GRACE mission was 
launched in March 2002 and provides temporal gravity field measurements with global cov-
erage. The GRACE-FO mission was launched on May 21, 2018, with the primary goal to 
track Earth’s mass movements and changes, particularly those related to water, with a key 
application in groundwater monitoring. Climate change exacerbation of drought conditions 
has increased dependence on groundwater for agricultural and other uses globally, thus its 
monitoring is required. The data used in this study is GRACE/GRACE-FO RL06 v02 Mascon 
Grids w/ Corrections Applied from the Center for Space Research (CSR) in Austin, Texas, 
USA. The data covers April 2002 to December 2022 and is in the NetCDF format (https://​
www2.​csr.​utexas.​edu/​grace/​RL06_​masco​ns.​html).

We also employ rainfall data for comparison with soil moisture content variation. This 
dataset includes three products with different temporal resolutions: three-hourly (3B42), daily 
(3B42 derived), and monthly (3B43). The spatial resolution is 0.25° × 0.25° and extends from 
latitude 50° S to 50° N. In this study, only the TRMM 3B43 product for 2018–2019 is used, 
which is the monthly mean of the TRMM 3B42 dataset (https://​disc.​gsfc.​nasa.​gov/​datas​ets/​
TRMM_​3B43_7/​summa​ry).

2.3 � Data analysis

The datasets utilized in this study (Table  1) were harmonized to a common spatial res-
olution, and the effects of the seasonal cycle were removed from the data to prevent 

https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.0/summary
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.0/summary
https://modis.gsfc.nasa.gov/data/dataprod/
https://iridl.ldeo.columbia.edu/
https://iridl.ldeo.columbia.edu/
https://iridl.ldeo.columbia.edu/
https://www2.csr.utexas.edu/grace/RL06_mascons.html
https://www2.csr.utexas.edu/grace/RL06_mascons.html
https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary
https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary
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non-stationarity, which can lead to false correlations. The daily soil moisture from the 
SMAP and CYGNSS observations were converted into monthly samples. Given the inher-
ent differences in spatial and temporal resolutions among the datasets used in this study, we 
employed the bilinear resampling method to standardize all datasets to a consistent 1° by 
1° spatial resolution. This process was conducted within the R programming language. The 
bilinear resampling method calculates a pixel’s value based on a weighted distance average 
from its four adjacent pixels. Following this resampling process, we adjusted all datasets to 
a uniform monthly temporal resolution for further analysis, ensuring consistency and com-
parability across all datasets. The SMAP and CYGNSS soil moisture datasets were com-
pared with the GLDAS soil moisture model, which was considered as reference data. We 
computed the Pearson correlation (r) between the datasets using the overall average values. 
The Root Mean Square Errors (RMSE) were calculated to estimate the degree of perfor-
mance and provide a reliable statistic to validate the agreement between datasets. Addition-
ally, probability values (p-values) were computed to highlight the degree of significance in 
their correlations The r and RMSE are calculated as follows:

where, X
i
 and Y

i
 represent the GLDAS and SMAP or GLDAS and CYGNSS soil moisture 

data respectively, and X and Y  are the mean value of the GLDAS with SMAP and GLDAS 
with CYGNSS data respectively, with  n = 38.

3 � Results

3.1 � Evaluation and validation of SMAP and CYGNSS soil moisture

To validate the SMAP and CYGNSS soil moisture data, soil moisture from 0 to 10  cm 
from GLDAS was used as a reference. Initially, scatter plots were generated between 
SMAP and GLDAS, and CYGNSS and GLDAS soil moistures. As depicted in Fig. 2, both 
soil moisture products exhibit a strong correlation with GLDAS soil moisture, with cor-
relation coefficients (r) of 0.76 and 0.83, respectively, and significant p-values of 0.06 and 
0.05, respectively. Here, n = 38 represents the data points of the relationship between the 
SMAP and GLDAS, and between CYGNSS and GLDAS datasets. The points in scatterplot 
(b) are relatively closer to the trend line than those in scatterplot (a), illustrating a stronger 
correlation between them. A summary of the statistics is provided in Table 2.

Additionally, monthly soil moisture data from January 2018 to December 2019, derived 
from SMAP, CYGNSS, and GLDAS, were used to compute the time series plots (Fig. 3). 
In terms of correlation coefficient (r) and Root Mean Square Error (RMSE), both SMAP 
and CYGNSS soil moisture performed well with GLDAS soil moisture, with r = 0.98 and 
RMSE = 0.03 for SMAP, and r = 0.97 and RMSE = 0.02 for CYGNSS, respectively. The 
low RMSE values indicate a good performance between the datasets. The variance is 0.78 
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for SMAP and 0.67 for CYGNSS (Table 3). Furthermore, SMAP and CYGNSS soil mois-
ture, along with GLDAS soil moisture on a monthly basis, show a good performance by 
capturing the features of GLDAS soil moisture (Fig. 3).

Whether in 2018 or 2019, GLDAS detected the drought first, followed by SMAP and 
CYGNSS. Moreover, SMAP and CYGNSS soil moisture values do not exhibit a net convex 
function as observed with GLDAS at the drought peak.

3.2 � Time series plots of SMAP and CYGNSS soil moistures and drought indicators

Figure  4 illustrates the temporal evolution of the plots between SMAP and CYGNSS 
soil moisture and the drought indicators, compared with precipitation data for the period 

Fig. 2   Scatter plot of SMAP and CYGNSS soil moisture with GLDAS soil moisture for 2018–2019. (The 
values reported in the figure are the average values of each variable of the two years)

Table 2   Pearson correlation and 
P-values

GLDAS soil moisture SMAP soil moisture CYGNSS 
soil mois-
ture

Pearson’s r 0.76 0.83
p-values 0.06 0.05

Fig. 3   Time series plots of SMAP and CYGNSS soil moisture with GLDAS soil moisture for 2018 and 
2019. (The values reported in the figure are the monthly value of each variable of the two years)



7956	 Natural Hazards (2024) 120:7947–7967

1 3

2018–2019. The maps on the right side of the plots represent the spatial distribution 
maps of each variable for the same period. All the variables align well temporally on a 
global scale, with minor differences observed in the trend with SPI3 and TWS. In fact, 
SPI3 and TWS exhibit some shifts in the variations during the temporal evolution when 
compared against other variables. The dry and wet conditions monitored through SMAP 
and CYGNSS observations align well with the low and high value areas of the GLDAS 
and rainfall values, while SPI3 presents minor differences in the variation in the initial 

Table 3   Pearson correlation, 
variance and RMSE values for 
2018–2019

2018–2019 GLDAS soil moisture

SMAP soil moisture Pearson’s r 0.98
RMSE 
Variance

0.03 
0.78

CYGNSS soil moisture Pearson’s r 0.97
RMSE 
Variance

0.02 
0.67

Fig. 4   Time series plot of SMAP and CYGNSS soil moisture, NDVI, TWS and SPI3 in comparison with 
precipitation data from January 2018 to December 2019. (The values reported in the maps are the average 
values of each variable of the two years, while the ones in the plots are the monthly value of each variable)
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period. Conversely, TWS and NDVI detect the dry conditions later, depicting some shifts 
in the evolution when compared against SMAP and CYGNSS. Thus, SMAP and CYGNSS 
observations can be considered highly sensitive to short-term dry conditions. Additionally, 
the spatial maps depict similar patterns, except for SPI3 and TWS, and SMAP and CYG-
NSS perfectly capture the drought conditions over the period, as captured by GLDAS and 
NDVI.

3.3 � Correlation to NDVI, SPI3 and TWS indicators

We further investigated the correlation to SPI3, NDVI, and TWS indicators using the 
Pearson correlation coefficient (r) and probability values (p-values), which are summa-
rized in Table  4. Figure  5 shows a positive slope for all cases, indicating a good linear 
relationship, except between CYGNSS and TWS. The correlations between SMAP and 
SPI3, and between SMAP and NDVI, are strong with r = 0.84 and r = 0.93, respectively, 
while the correlation between SMAP and TWS is lower with r = 0.47. The correlations 
between CYGNSS and SPI3, and between CYGNSS and NDVI, are strong with r = 0.78 
and r = 0.86, respectively, while it is low with TWS (r = 0.56). For both soil moisture data-
sets, their correlation with TWS is low. This could be due to the fact that TWS is less 
sensitive to short-term dry conditions. The delayed responses of TWS could be attributed 
to the hydrological connectivity of the region and local topography. Furthermore, the data 

Table 4   Correlation r and 
P-values between the variables

SPI3 NDVI TWS

SMAP soil moisture Pearson’s r 0.84 0.93 0.47

p-values 0.05 0.04 0.01

CYGNSS soil moisture Pearson’s r 0.78 0.86 0.56
p-values 0.04 0.03 0.02

Fig. 5   Scatter plots between soil moistures (SMAP and CYGNSS) and NDVI, SPI3 and TWS for 2018 to 
2019. (The values reported in the figure are the average values of each variable of the two years)
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points (n = 38) representing the relationship between SMAP or CYGNSS and the drought 
indicators (SPI3, NDVI, TWS) show relatively less dispersion in the SMAP scatterplots 
than in the CYGNSS scatterplots. This suggests a stronger correlation between SMAP and 
the variables compared to CYGNSS with the variables. The p-values between SMAP or 
CYGNSS and the indicators are significant, indicating a statistically meaningful relation-
ship. The good correlation between SMAP or CYGNSS and the drought indicators sug-
gests they are sensitive to drought conditions, especially for short-term drought monitor-
ing. Short-term drought refers to a weather pattern that results in a precipitation deficit 
lasting for a few weeks up to six months. Figure 6 shows the spatial patterns of dry and 
wet conditions from SMAP, CYGNSS, GLDAS, and the drought indicators (SPI3, NDVI, 
and TWS) from October 2018 to August 2019. All the variables capture the dry conditions 
features similarly when compared to each other, except for SPI3 and TWS. Overall, SMAP 
and CYGNSS are relatively more sensitive to drought conditions when comparing the spa-
tial map patterns and the temporal evolution of the plots of the variables.

Our findings, as illustrated in Fig. 6, reveal that all variables displayed similar spatial 
patterns throughout the study period. The highest and lowest values varied according to 
each variable or indicator, denoting the drought classification. From October to December 
2018, there was a consistent absence of drought. This began to escalate from January to 
March 2019, before experiencing a slight decline until September. The surge in January 
can be attributed to rainfall in late December, with a significant downpour occurring in 
February. Specifically, during the 2018–2019 year, there was a pronounced peak of rainfall 
in late December 2018 and above-average rainfall in the first week of February 2019.

Figure 7 presents the drought hotspots map of the Southern Africa region for the same 
period, computed using variables such as monthly rainfall, maximum dry spell in the 
month, start date of the growing season, and monthly averages of NDVI and Land Sur-
face Temperature. Globally, the drought appears to be more severe in the southwest than 
in other regions, as depicted by both our computed spatial maps and the drought hotspots 
map. Overall, SMAP and CYGNSS observations accurately capture the drought and dis-
play very similar spatial patterns when compared with the drought hotspots map.

4 � Discussion

Our assessment analysis reveals that SMAP and CYGNSS data have a strong correlation 
(r = 0.98 and r = 0.97 respectively) with GLDAS data for the study period, indicating their 
good accuracy and reliability. The correlations of SMAP to NDVI, SPI3, and TWS are 
r = 0.93, r = 0.84, and r = 0.47, respectively, while the correlations between CYGNSS and 
the same indicators are r = 0.86, r = 0.78, and r = 0.56, respectively.

The GLDAS model appears to detect drought conditions earlier than SMAP and CYG-
NSS (see Fig. 3). This may be due to the vegetation effect on the measurement since dense 
vegetation canopies are difficult to penetrate by the SMAP L-band (Chan et al. 2016) and 
significantly affect GNSS-R signals, leading to less sensitivity in changes in drought inten-
sity. Due to rainfall that usually occurs in that period (December-February), the NDVI val-
ues are high consequently since there is a strong correlation between spatial and temporal 
patterns of NDVI and rainfall (Davenport et al. 1993). For the year 2018–2019 especially, 
the rainfall got a high peak in late December 2018 (https://​relie​fweb.​int/​sites/​relie​fweb.​int/​
files/​resou​rces/​ca307​1en_0.​pdf) and was heavier than average in the first week of February 

https://reliefweb.int/sites/reliefweb.int/files/resources/ca3071en_0.pdf
https://reliefweb.int/sites/reliefweb.int/files/resources/ca3071en_0.pdf
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2019 (https://​relie​fweb.​int/​sites/​relie​fweb.​int/​files/​resou​rces/​Globa​lWeat​herHa​zard19.​02.​
15.​pdf).

In Fig. 4, the variables exhibit, overall, similar trends and patterns globally. Dry and 
wet conditions monitored through SMAP and CYGNSS agree, globally, with the low 
and high values in common areas of indices and rainfall events, except with SPI3, which 

Fig. 6   Spatial distribution of dry and wet conditions of the indicators at the drought time span (drought 
occurred between October 2018 and August 2019). (The values reported in the maps are the average values 
of each variable of the two years)

https://reliefweb.int/sites/reliefweb.int/files/resources/GlobalWeatherHazard19.02.15.pdf
https://reliefweb.int/sites/reliefweb.int/files/resources/GlobalWeatherHazard19.02.15.pdf
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presents a somewhat different trend in the first period, and with TWS and NDVI, which 
detect the dry conditions late. The SPI3 index has the potential for short-term resolu-
tion, but specifically, for seasonal drought monitoring, while the TWS is good for long-
term periods. Thus, TWS could not detect the immediate impact of rainfall deficits on 
groundwater storage. The minor delay observed in NDVI to detect the dry conditions 
could be explained by the rainfall effects since it got a high peak in December.

Figure  7 presents the drought map for Southern Africa for the year 2018–2019, 
which serves as the reference drought map for validating the spatial distribution of 
wet and dry conditions of the drought indicators (as shown in Fig. 6). The data used to 
estimate the drought that affected Southern Africa during the periods 2015–2016 and 
2018–2019 (ongoing) included monthly rainfall, maximum dry spell in the month, start 
date of the growing season, and monthly averages of NDVI and Land Surface Tem-
perature. The output is presented as an anomaly of the standardized variable (“FAO 
in the 2019 humanitarian appeal: 2018/19 El Niño Response Plan for Southern Africa 
-Zimbabwe”. ReliefWeb). The comparison between the reference drought map and the 
computed maps of wet and dry conditions reveals a similar spatial distribution, thereby 
demonstrating the effectiveness of our analyses and results.

In other regions, a comparison of SMAP and the China Land Soil Moisture Data 
Assimilation System (CLSMDAS) for drought monitoring on a weekly basis was 
conducted by Qian Zhu et  al. (2019). The authors found a correlation coefficient (r) 
of 0.70, demonstrating that SMAP data is a good candidate for drought monitoring. 
Drought monitoring from satellite sensors offers many advantages such as global cov-
erage, allowing for large area sensing, and daily revisiting time to monitor the onset 
of drought-related events, among others. The SMAP L-band enables all-weather condi-
tions (cloud-penetrating), and soil moisture observations are possible under sparse and 
moderate vegetation, unlike other visible/near-infrared sensors. SMAP measurements 
are possible at day and night since these are independent of solar illumination (Vel-
puri et al. 2016). However, some limitations are encountered when estimating these soil 
moistures. Among them are uncertainties or unavailability of soil moisture over regions 
with dense vegetation, coarse resolution (36 km), and the need for in-situ data for vali-
dation purposes (Velpuri et al. 2016). One major disadvantage in using satellite data for 

Fig. 7   SMAP and CYGNSS soil moisture maps and reference map of drought spatial distribution of South-
ern Africa of the year 2018–2019 (“FAO in the 2019 humanitarian appeal: 2018/19 El Niño Response Plan 
for Southern Africa—Zimbabwe”. ReliefWeb)
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drought monitoring is that the spatial resolution is too large (e.g., SMAP ≈ 3 km × 3 km, 
9 km × 9 km, or 36 × 36 km) (Crow et al. 2012).

GNSS-R technology provides a high temporal and spatial resolution alternative method. 
Although there are still some remaining uncertainties and issues, soil moisture is one of the 
most important application fields for this technology. Some of the current problems and 
challenges in the space-borne GNSS-R soil moisture retrieval include polarization, coher-
ent and non-coherent scattering components, observation geometry (Scattering Zenith 
angle and Azimuth angle), Brewster angle, Surface roughness, Vegetation Optical Depth 
(VOD), data dependence in the inversion algorithm, Effective Isotropic Radiated Power 
(EIRP), and Radio Frequency Interference (RFI). To reduce the polarization loss and 
improve the reception of the reflected signal, the antenna with the corresponding polariza-
tion should be used and the receiver needs a complex technical design (Wu et al., 2020). 
Moreover, the coherent and incoherent scattered energy of CYGNSS processing is cur-
rently a concern. Considering the incident signal is entirely a specular coherent scattering 
seems to be impossible since the actual surface is rough and if so, then there might be parts 
of diffuse scattering energy (Wu et al. 2021a, b). With a good spatio-temporal resolution, 
the GNSS-R consistent amount of data can be increased only if the effects of extreme inci-
dence angles are considered. In fact, the reflection coefficient or bistatic scattering coef-
ficient is highly affected by the angle information according to the observation geometries. 
However, in previous works, it is considered by some authors (Chew et  al. 2018) while 
not taken into account in other studies (Kim et al. 2018). Surface roughness and the soil 
permittivity are highly paired making it difficult to differentiate the one, which influences 
the GNSS-R signal. However, surface roughness needs to be eliminated in the inversion for 
improving the retrieval accuracy. Vegetation effects on the incident GNSS signals and the 
reflected signals need to be removed since they change the scattering properties at different 
observation angles. To remove its effect during the inversion, the attenuation due to VOD 
is assumed to be constant even at different angles (Al-Khaldi et al. 2019), which appears 
to be too simple. For GNSS-R soil moisture retrieval by employing linear regression 
method, GNSS-R reflectivity, SMAP, VOD, and roughness coefficient are used in some 
studies making the inversion algorithm very dependent on ancillary data (Calabia et  al. 
2019, Chew et  al. 2018). GNSS-R reflectivity data is affected by data calibration which 
has effects on the soil moisture retrieval (Molina et al. 2022), even though, this issue can 
be solved by EIRP method (Wu et al. 2021a, b). Radio Frequency Interference (RFI) can 
impact GNSS-R sensors through reflection, diffraction, atmospheric refraction, and scatter-
ing, and can be responsible for an unusual increase in reflected signals. However, to date, 
limited research on RFI for CYGNSS has been conducted (Wu et al. 2021a, b). GNSS-R 
offers numerous advantages such as global scale observation, very low revisit time, low 
cost, low power consumption, lightweight and small payloads, and near real-time massive 
data availability. However, a discrepancy can be noticed when comparing the estimated 
GNSS-R surface reflectivity values with the actual surface reflectivity values (Molina et al. 
2022). Vegetation Optical Depth (VOD) estimates from optical remote sensing have been 
proposed and employed in many studies, and less dependence on SMAP and other ancil-
lary data should be considered in future researches.

In summary, the soil moisture data from SMAP and CYGNSS are highly effective for 
drought monitoring and detection. This is particularly true in regions where data is scarce 
and for large-scale soil moisture monitoring, as these datasets offer significant advantages 
over traditional methods for estimating soil moisture. Both SMAP and CYGNSS data boast 
relatively high accuracy and provide global coverage with a high spatiotemporal resolution. 
This makes them invaluable tools in the field of drought monitoring.
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However, although satellite soil moisture data has been used as a common approach 
to monitor and predict drought, it may not offer sufficiently accurate spatial outputs. In 
addition, different sensors have different algorithms with their advantages and disadvan-
tages over different geographical and climate regions. For example, satellite soil moisture 
measurement over open water might lead to significant bias (Wu et al. 2016). Vegetation 
optical depth and surface roughness are among the parameters that most affect the signals 
and influence the data accuracy, especially for CYGNSS. Factors such as soil roughness 
and vegetation can significantly impact the accuracy of soil moisture estimates, and effec-
tively mitigating these effects can yield highly reliable observation data at a high tempo-
ral and spatial resolution. In this study, the seasonal cycle effect was addressed using the 
Deseason function of Matlab, as outlined in the data analysis section. As for the effects of 
surface roughness and Vegetation Optical Depth (VOD), these were not considered during 
the computations due to their complexity and the extensive work required to address them. 
These factors could be the focus of a separate investigation. Making corrections to satellite 
soil moisture data to minimize the effects of these parameters would require a number of 
algorithms and additional data. Another limitation is the approximate threshold value of 
the soil moisture from which drought conditions can start and the corresponding drought 
classes.

Soil moisture plays an important role in drought monitoring and prediction, flood fore-
casting, landslide and soil erosion prediction and forest fire prediction. However, due to its 
complex relationship with different variables, the methodology used in this work focuses 
on drought monitoring (agricultural drought) even though it can be applied to other areas.

5 � Conclusions

This study advocates for the use of soil moisture data as a direct tool for detecting droughts, 
particularly for short-term drought detection and monitoring. Soil moisture data from 
SMAP and CYGNSS have demonstrated strong correlations and good Root Mean Square 
Error (RMSE) values with GLDAS data. The validation of SMAP and CYGNSS soil mois-
ture using GLDAS data as a reference value underscores the effectiveness of these satel-
lite-based techniques in soil moisture monitoring. SMAP and CYGNSS soil moisture can 
provide drought detection, particularly for short-term drought events. This is confirmed by 
the strong correlation (r) with drought indicators such as NDVI, SPI3, and TWS. We have 
demonstrated that SMAP and CYGNSS soil moisture can detect early drought conditions 
and provide short-term warnings. Thus, SMAP and CYGNSS soil moisture can deliver 
accurate short-term drought warnings, and have the advantage of being simple and easy 
to implement in practical applications for users such as farmers and government officials.

The direct use of soil moisture data for monitoring drought has numerous advan-
tages, including its ease of use, simple computation, and no requirement for advanced 
data processing skills. In fact, utilizing soil moisture data to study and monitor drought 
is straightforward and accessible for the authorities responsible for this area. It allows 
for quick analysis of soil moisture changes and the ability to use those results to detect 
drought. Complex computations such as the Standardized Soil Moisture Index (SSI), 
Soil Water Index (SWI), Soil Moisture Anomaly (SMA), or Soil Water Deficit Index 
(SWDI) relatively require extensive data and are cumbersome. Utilizing direct measure-
ment data may provide more accurate and beneficial results than derived data, especially 
when considering potential data alterations. However, it is important to be aware of the 
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seasonal cycle effect, which can impact the values of the time series and needs to be 
addressed during the study. Removing this effect is crucial to avoid its impact on trends, 
as non-stationarity in the data can lead to false correlations.

However, to ensure the reliability and effectiveness of our results, we used the Global 
Land Data Assimilation System (GLDAS) soil moisture data as a reference or ground truth 
for comparison and validation. This approach allowed us to confidently assess the accu-
racy of our soil moisture estimates, despite not accounting for surface roughness and VOD 
effects. To improve our ability to monitor drought and forecast its impacts at different spa-
tio-temporal scales, reliable and accurate remote sensing techniques are essential. These 
methods can provide soil moisture measurements at a high spatial and temporal resolution, 
making them an effective supplement to existing observational methods.

This study underscores the potential and reliability of utilizing soil moisture data 
from SMAP and CYGNSS directly for drought monitoring, thereby enhancing existing 
methods and procedures. However, it is important to note that this study was confined 
to using soil moisture data only from 2018 to 2019 to demonstrate the effectiveness of 
this approach. For a more comprehensive evaluation and generalization of the results, 
it would be necessary to use more extensive data over a longer time period. Therefore, 
our method can be seen as a supplementary analysis to existing methods, rather than 
a replacement. Additional studies that employ multi-year time series data at different 
scales are needed to improve our understanding of changes in soil moisture and reveal 
the relationship between soil moisture evolution and drought severity. To achieve this, 
further research could involve generating correlation and slope maps between the indi-
cators to detect their spatial strength, and examining the effects of geographical param-
eters such as vegetation, water bodies, urban areas, and terrain on their relationship. 
Achieving this would require data corrections as the first step.
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