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Abstract
The spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) has proven its worth in terrestrial remote sensing 
applications. Its application to detecting land surface soil moisture (SSM) is particularly intriguing, as it can provide fine-scale 
SSM products to supplement traditional satellite-based active and passive missions. Various retrieval algorithms have been 
developed to produce SSM products using spaceborne GNSS-R. However, detailed evaluations of product reliability and 
robustness are still absent. In this study, we used three data sources to evaluate the level-3 SSM products from the CYclone 
Global Navigation Satellite System (CYGNSS) mission: (1) satellite-based microwave radiometry product from Soil Moisture 
Active and Passive (SMAP) mission; (2) a model-based product of Modern-Era Retrospective analysis for Research and 
Applications; and (3) in situ measurements from over 1800 ground stations in the Chinese soil moisture monitoring network. 
The study uses typical relative skill metrics and triple collocation approach (TCA)-based metrics, along with corresponding 
confidence intervals, to analyze the performance of SSM products derived from CYGNSS observations. According to the 
pixel-by-pixel validation and overall statistical findings, the results reveal that the current CYGNSS-based SSM exhibits low 
performance in southern China when compared to the radiometry-based data. The coefficient of determination (R2) is low 
(median R2=0.088) and the unbiased root-mean-square-difference (ubRMSD) is 0.057 cm3cm−3, which is poorer than the 
results from SMAP against in situ measurements (median R2=0.25, ubRMSD=0.046 cm3cm−3). The TCA-based analysis also 
revealed that CYGNSS had a relatively poor performance, with the lowest median R2 value of 0.167 and the largest median 
error standard deviation (ESD) value of 0.055 cm3cm−3. To obtain improved results that can better support related operational 
applications in the future, enhanced retrieval algorithms and high-accuracy calibration referenced data must be utilized.

1  Introduction

Soil moisture is an important indicator of global climate 
change and has been identified as one of the essential 
climate variables (Wagner et  al. 2012). Continuous 
collection of large-scale and long-term soil moisture 

data is essential for geoscience research and agricultural 
production (Vreugdenhil et al. 2022). Geoscientists are 
particularly interested in surface soil moisture (SSM) 
remote sensing using active and passive microwave 
sensors. Theoretical and validation experiments have 
demonstrated that L-band microwaves, which are 
sensitive to soil moisture changes, less vulnerable to 
vegetation, and unaffected by clouds, are optimal for SSM 
remote sensing (Saeedi et al. 2021). The Soil Moisture 
and Ocean Salinity (SMOS) mission (Kerr et al. 2010) 
and the Soil Moisture Active and Passive (SMAP) 
mission (Entekhabi et al. 2010) are two dedicated satellite 
missions for global-scale SSM remote sensing. These 
missions have been equipped with L-band monostatic 
microwave radiometers, offering a good perspective on 
monitoring global SSM dynamics.

The advancement of the Global Navigation Satellite System 
(GNSS) has facilitated the development of the spaceborne 
GNSS-Reflectometry (GNSS-R) technique (Martin-Neira 
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et al. 2001). GNSS-R receiver receives the opportunity signal, 
which is transmitted by the GNSS satellite and reflected off 
the Earth’s surface, forming a bistatic (multi-static) forward 
scattering radar (Gleason et al. 2005). The properties of the 
scattering interface, which are characterized by geophysical 
parameters, affect the echo in form and reflected power. The 
fundamental basis of the GNSS-R technique is mapping 
the features derived from the distorted observations to the 
interested geophysical parameters. The small size and mass 
of the GNSS-R receiver make it easily deployable on the 
micro-satellite platform with lower power dissipation (Ruf 
et al. 2012) and easily develop low Earth orbit observing 
constellation, which can help fill spatial-temporal gaps 
in dedicated SSM remote sensing satellite observations. 
Therefore, leveraging spaceborne GNSS-R technique allows 
for the collection of high spatiotemporal resolution SSM 
information across large regions.

The SSM products are derived from satellite-based passive 
microwave radiometry sensors with coarse spatial resolutions 
ranging from 25 to 50 km (Gelaro et al. 2017; Chew and 
Small 2020). Many studies have focused on comparing 
the accuracy of these satellite estimates to ground-based 
measurements, which represent the most prevalent approach 
employed in performance validation studies. Measurements 
from in situ soil moisture stations can only represent soil 
wet conditions within a few hundred meters surrounding the 
station. The application of site measurements is primarily 
limited by their quantity and observation extent. Therefore, 
dense core validation sites and sparse in situ networks are 
typically used to assess the quality of coarse-resolution 
satellite-based products. The results of these assessments are 
considered more reliable and can provide the most precise 
evaluation (Peischl et  al. 2012; Colliander et  al. 2022), 
despite the large differences in spatial resolution between the 
ground station and the coarse satellite-based products. Based 
on the previous study, the point-scale SSM data from in situ 
measurements can be indicative of a large area based on the 
temporal stability concept (Brocca et al. 2011), which implies 
that ground probe observations can be a good benchmark 
for satellite-based product validation. Additionally, nearest-
neighbor (NN) searches are commonly employed to match 
station measurements from sparse networks with the 
referenced grid for satellite-based products (Gruber et al. 
2020). Many studies have utilized diverse comparison 
approaches to evaluate different satellite-derived SSM 
datasets across various regions and scales (Cui et al. 2017; 
Chen et al. 2018; Wang et al. 2021).

The CYclone Global Navigation Satellite System 
(CYGNSS) mission has emerged as a highly valuable 
data source for satellite-based GNSS-R SSM retrieval. 
Despite being originally designed for ocean surface 
wind speed monitoring (Clarizia and Ruf 2016), the 
CYGNSS mission also offers significant advantages for 

SSM retrieval, including near-daily revisit time and the 
enormous amount of freely available data. Previous studies 
mainly focus on SSM retrieval algorithm development and 
the model performance assessment based on the GNSS-R 
technique (Chew and Small 2018; Al-Khaldi et al. 2019; 
Clarizia et al. 2019; Yan et al. 2020). The semi-empirical 
models commonly employed rely on establishing a linear 
mapping relationship between aggregated observables 
obtained from GNSS-R observations and reference SSM 
for individual grid cells. The University Corporation for 
Atmospheric Research (UCAR) and the University of 
Colorado at Boulder (CU) investigators have published 
their estimated daily SSM products using CYGNSS data 
at the Physical Oceanography Distributed Active Archive 
Center (PODAAC). These products were generated 
using an empirical linear regression inversion algorithm, 
accompanied by a series of well-established and rigorous 
pre-processing procedures (Chew and Small 2020). 
Machine learning and artificial neural networks can handle 
complex and non-linear relationships between GNSS-R 
observables and SSM. They can accurately capture the 
intricate relationships present in the data, integrate diverse 
data sources, adapt to different conditions, and efficiently 
automate processing. This makes them a valuable 
approach for advancing soil moisture remote sensing 
capabilities with GNSS-R (Eroglu et al. 2019; Jia et al. 
2021). However, the calibration of GNSS-R observables 
to SSM in nearly all retrieval algorithms predominantly 
relies on SSM products provided by the SMAP mission. 
Furthermore, the evaluation of retrieval performance often 
utilizes in situ measurements from the International Soil 
Moisture Network (ISMN), which are mainly located in 
the USA and Europe. The performance in other regions, 
especially in China, has not been reported to date (Chew 
and Small 2020; Wan et al. 2022).

There is a lack of consensus regarding the accuracy of the 
terrestrial SSM estimation through CYGNSS observations. 
Various spatial and temporal factors, such as the choice of 
study area, the study period, reference data, and auxiliary 
data employed, as well as the data pre-processing and 
evaluation strategies adopted, collectively impact the 
overall quality of inversion results. Accurate evaluation 
of the quality of satellite-based microwave remote sensing 
products is essential to understand the spatial and temporal 
distribution of uncertainty before utilizing them in other 
geoscience disciplines. While reliable validation frameworks 
and methods have been proposed for evaluating satellite-
based active and passive microwave product evaluation 
(Gruber et al. 2020), few GNSS-R SSM assessment studies 
follow the same rigorous approach as other satellite-based 
data. These studies utilize high-quality reference data sets 
and employ the triple collocation approach (TCA) to obtain 
robust uncertainty metrics, along with estimated confidence 
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intervals. Overall, the current CYGNSS-derived SSM still 
lacks robust assessment.

This study aims to comprehensively assess the CYGNSS-
derived SSM products, providing insights into the current 
performance of spaceborne GNSS-R in monitoring SSM 
and offering a guide for future algorithm development and 
related applications. The methodology followed in this work 
adheres to the good practice guidelines outlined in Gruber 
et  al. (2020) and was implemented in Southern China 
using various SSM data sources from the year 2018. The 
remaining part of the paper proceeds as follows: the second 
section introduces the data collection and methodology used 
in the study. The validation findings are presented in the 
third part. The discussions are given in section 4. The final 
section provides a concise overview of the research.

2 � Materials and methods

2.1 � Datasets

2.1.1 � CYGNSS

The primary objective of the CYGNSS mission was to 
collect sea surface wind speeds with high spatial and 
temporal resolution, specifically for studying tropical 
cyclone intensity. The space segment of CYGNSS mission 
consists of eight small satellites orbiting on a plane, covering 
a latitude range of 38° north and south. Meanwhile, the 
observing system can provide observable of reflectivity over 
the land surface that can further be used for SSM retrieval 
(Dong and Jin 2021). The mission science teams have 
released various levels of data products to facilitate relevant 
scientific studies and operational applications. UCAR/CU 
has developed CYGNSS L3 volumetric SSM products with 
a spatial resolution of 36 km by 36 km and daily/sub-daily 
temporal resolution (https://​podaac.​jpl.​nasa.​gov/​datas​et/​
CYGNSS_​L3_​SOIL_​MOIST​URE_​V1.0). A specific SSM 
retrieval algorithm was designed for CYGNSS observations, 
in which the CYGNSS-derived reflectivity was calibrated 
to SSM using a pre-generated semi-empirical linear model 
at each the Equal-Area Scalable Earth (EASE) Grid-2 grid 
pixel. This algorithm employs SMAP mission provided SSM 
products as the surface reference values (Chew and Small 
2020). In this study, we focus on evaluating the daily SSM 
parameter from the L3 product.

2.1.2 � SMAP

The SMAP mission was primarily designed to collect 
continuous global-scale SSM data at hydrometeorology 
and hydroclimatology scales, with a temporal frequency 
of every 2–3 days. The sensors on board SMAP satellite 

consist of a high-resolution active radar and passive 
radiometer sharing a single feedhorn and parabolic reflector 
at L-band frequency. However, due to a power amplifier 
malfunction, the radar component failed after launch. 
Consequently, the available dataset for SSM estimation 
is limited to radiometry measurements. In this study, the 
SMAP L3 V8 products (SPL3SMP) were used (https://​
nsidc.​org/​data/​spl3s​mp/​versi​ons/8). The baseline algorithm 
for SSM retrieval has been updated from the previous single 
channel algorithm-vertical polarization to the dual channel 
algorithm, which has shown slightly improved performance 
in validation over certain agricultural cropland core sites 
(ONeill, Peggy E. et al. 2021). The passive radiometer 
operates at a spatial resolution of 40 km, and the SSM is 
retrieved and sampled on the 36 km×36 km EASE-Grid2 
grid cell. The daily updated HDF5 file contains each half-
orbit pass of the satellite, namely descending and ascending 
passes, respectively. Considering that the adopted model-
based surface temperature parameter used in the retrieval 
algorithm exhibits greater uniform in two-dimensional 
planes and vertical profiles in the morning, resulting in 
better data quality for the descending half-orbit pass of the 
satellite (Chen et al. 2018), only the recommended AM data 
are used in this study.

2.1.3 � Soil sparse network

Automatic soil moisture in situ stations are renowned for their 
high measurement accuracy and ability to provide continuous 
monitoring at various depths. Therefore, the in situ station 
measurements are widely accepted as the reference values 
for the satellite-based SSM product evaluation. In this study, 
raw hourly soil moisture measurement data set were collected 
from the Chinese soil moisture monitoring network in the 
year of 2018. The soil moisture network includes over 2000 
stations equipped with frequency domain reflectometry 
sensors, enabling the measurement of volumetric SSM at 
different depths (Wu et al. 2016). These measurements were 
recorded as average values during the 10 min leading up to 
each hourly interval. SSM values at a depth of 0–10 cm were 
selected for this study. Figure 1 illustrates the distribution 
of these selected stations across China. Within the scope 
of the CYGNSS constellation and to meet the requirement 
of data quality control, a total of 1824 stations are qualified 
and used for validation purposes. As the collected raw 
data set did not undergo quality control processing, the 
measured SSM time series may contain outlies resulting from 
instrument abnormalities. To enhance the quality of the in situ 
measurements, the preprocessing approach outlined in Saeedi 
et al. (2021) is employed. This approach utilized the median 
absolute deviation (MAD) method to detect and remove the 
outliers to improve the quality of in situ measurements:

https://podaac.jpl.nasa.gov/dataset/CYGNSS_L3_SOIL_MOISTURE_V1.0
https://podaac.jpl.nasa.gov/dataset/CYGNSS_L3_SOIL_MOISTURE_V1.0
https://nsidc.org/data/spl3smp/versions/8
https://nsidc.org/data/spl3smp/versions/8
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where X represents the time series at each in situ station, 
Xi denotes the ith sample, and the value of b is determined 
based on the distribution of time, with β being a scale factor 
that can use to adjust the conservativeness of rejection 
criterion. In this study, β is set to 2.5. The normality of the 
time series is tested using D’Agostino and Pearson’s test 
(D’Agostino 1971; D’Agostino and Pearson 1973), which 
combines skewness and kurtosis to provide an omnibus 
normality test, Q(0.75) represents the 0.75 quantiles.

2.1.4 � MERRA‑2

The model-based data set of the Modern-Era Retrospective 
analysis for Research and Applications, Version 2 (MERRA-
2; Gelaro et al. 2017) is the latest atmospheric reanalysis 
generated by NASA’s Global Modelling and Assimilation 
Office. The land SSM information is included in “MERRA-2 
tavg1_2d_lnd_Nx” file collection. This collection offers 
global 1-hourly estimates of land SSM parameters with a 

(1)

⎧⎪⎪⎨⎪⎪⎩

Median(X) − 𝛽 ×MAD(X) < Xi < Median(X) + 𝛽 ×MAD(X)

MAD(X) = b ×Median
���Xi −Median(X)��

�

b =

�
1.4826,X ∼ N

�
𝜇, 𝜎2

�
1

Q(0.75)
, other

spatial resolution approximately 50 km in the latitudinal 
direction, represented on 0.5° × 0.625° grid, spanning from 
1980 to present (M2T1NXLND) (Reichle et al. 2017). The 
SSM values in this dataset correspond to a depth of 0–5 
cm and are assimilated using multiple observations (https://​
disc.​gsfc.​nasa.​gov/​datas​ets/​M2T1N​XLND_5.​12.4/​summa​
ry). For more detailed information, please refer to Gelaro 
et al. 2017.

2.2 � Methodology

2.2.1 � Pre‑processing

The preprocessing technique for satellite-based remote sensing 
product assessment typically involves four key processes: data 
masking, spatial and temporal collocation, decomposition, and 
rescaling (Gruber et al. 2020). The CYGNSS L3 SSM product 
released by UCAR/CU has undergone masking to exclude the 
unreliable area, such as inland water bodies and rainforests. 
Additionally, due to the low signal-to-noise ratio of CYGNSS 
observations in the Tibetan Plateau in China, which can be 
influenced by factors such as snow, permafrost, and topogra-
phy effect, data across this region were also excluded from the 
product. The quality control strategy for in situ measurements 
has been mentioned before. High-uncertainty SSM values in 
SMAP and MERRA-2 products are also masked out, following 
the recommendations of the data providers. It should be noted 

Fig. 1   Geographical distribu-
tion of selected in situ stations 
from the Chinese soil moisture 
monitoring network for evalua-
tion purposes

https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_5.12.4/summary
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that the temporal coverage of this study is limited to 2018, as 
only in situ measurements during this period of time were col-
lected. To ensure consistency with CYGNSS data, the in situ 
measurements were upscaled to match the temporal resolution 
of CYGNSS SSM data by using the average value. Firstly, the 
station locations were projected onto the EASE-Grid2 grid. 
Subsequently, the in situ measurements within the same grid 
cell were aggregated into daily averages, representing the SSM 
time series observed at the corresponding grid pixel. During 
the projection, it was observed that most grid pixels contained 
only one or two stations as summarized in Table 1. In order 
to maintain consistency across all grid datasets and ensure 
spatial and temporal collocation, the MERRA-2 data were 
also resampled to the 36 km×36 km EASE-Grid2 grid using 
a nearest-neighbor interpolation approach. Furthermore, the 
short-term anomalies were computed using a 35-day sliding 
average window to remove seasonal effects on the collocations 
(Brocca et al. 2011):

where SM(t) represents the SSM value at an individual 
sampling epoch of time series, the overbar indicates the 
temporal average, and σ denotes the standard deviation of 
the selected series in the average window, which is defined 
by t ± 17 epochs around the computed epoch.

In the evaluation using the TCA, a rescaling approach was 
applied to mitigate systematic differences between the satellite-
derived and site-specific SSM data. The linear bias correction 
method, as proposed by Brocca et al. (2010), was utilized to 
align the temporal mean and standard deviation of data sets.

2.2.2 � Performance indicators

The spatial resolution of GNSS-R observations is influenced by 
a combination of observation geometry and scattering surface 
characteristics. Additionally, the specular scattering points of 
spaceborne GNSS-R exhibit a pseudo-random distribution. To 
improve the signal-to-noise ratio, the CYGNSS observables 
were commonly gridded using spatial and temporal averaging 
in the retrieval algorithm. These factors pose challenges in 
establishing a core validation station for the evaluation of 
CYGNSS SSM. The accuracy of GNSS-R SSM products 
can also be verified by employing appropriate data analysis 
techniques, utilizing station measurements from sparse 

(2)SManom(t) =
SM(t) − SM(t − 17 ∶ t + 17)

�[SM(t − 17 ∶ t + 17)]

networks, leveraging products from other satellite remote 
sensing systems, and surface models.

This study utilizes various skill metrics to assess the 
agreement among CYGNSS, SMAP, and in situ data. The 
skill metrics employed include mean bias, unbiased root-
mean-square-difference (ubRMSD), correlation coefficients, 
and triple collocation-based metrics. These metrics provide 
insights into the level of agreement between the datasets and 
help evaluate their uncertainty.

Temporal mean bias:

where xi is the gridded SSM date point to be verified, and yi 
is the collocated reference SSM; the size of the samples is 
denoted by N.

Unbiased root-mean-square-difference:

where x and y indicate the mean values of the SSM to be 
validated and the reference SSM time series at the grid cell, 
respectively.

Pearson correlation coefficient:

the correlation coefficient can also be represented as the 
square of its value, known as the coefficient of determina-
tion R2, which typically ranges from 0 to 1.

However, due to the limited number of samples and presence 
of sampling errors, there is inherent uncertainty associated with 
the validation metrics. To quantify this variation, confidence 
intervals (CIs) are used. A CI represents the range of values 
within which the point estimate is expected to fall a certain 
percentage of the time if the experiment is repeated or the 
population is resampled in the same manner. CIs are useful 
for conveying the degree of variation around a point estimate 
(Hazra 2017). The width of CI can vary depending on the 
confidence level, sample size, and sample variability. A higher 
sample variability leads to a wider CI. The confidence level, 
on the other hand, is the proportion of times an estimate can be 
reproduced between the upper υ(X) and lower limits μ(X) of the 
CI for a specific statistical parameter θ.

(3)biasxy =
1

N

∑N

i=1

(
xi − yi

)

(4)ubRMSDxy =

√
1

N

∑N

i=1

((
xi − x

)
−
(
yi − y

))2

(5)Rxy =

∑N

i=1

�
xi − x

��
yi − y

�
�∑N

i=1

�
xi − x

�2 ∑N

i=1

�
yi − y

�2

Table 1   Summary of in situ stations projected to EASE-Grid2 grid located within a same grid pixel

Grid pixel count 637 229 75 37 11 4 1 2 1
Stations 1 2 3 4 5 6 7 8 10
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The required confidence level γ is often indicated as one 
minus the alpha value (α) employed in the statistical test, where 
the α is the probability threshold for statistical significance.

To void obtaining an extremely broad interval that loses its 
practical significance, this work utilizes an 80% confidence level 
for estimating the CI (Gruber et al. 2019, 2020). Additionally, 
considering that sample auto-correlation can impact the width 
of the CI, the assumption of first-order auto-regressive AR(1) 
behavior is made for the time series, the lag-1 auto-correlation 
was employed to calculate the effective sample size:

where �i = e
−

dm

�i  , i ∈ [x, y] is obtained from fitted AR(1) 
model, τ is the fitted persistence time of time series, and 
dm is the median time distance between consecutive valid 
collocations. Using the values from sample data to replace 
the population values:

where x is the sample mean, s is the sample standard devia-
tion, t∗ is the critical value of the t-distribution, and χ∗ is the 
critical value of the χ-distribution. Check the correspond-
ing look-up table with necessary parameters (alpha value, 
degrees of freedom) to determine the two-tailed interval.

The calculation of Pearson’s correlation coefficient CI 
involves Fischer’s z-transformation, which is used to convert 
Rxy into a new random variable Zxy, that approximately 
follows a normal distribution Zxy ∼ N

(
0.5 ln

(
1+Rxy

1−Rxy

)
, (n − 3)

−0.5
) . 

Subsequently, when determining the upper and lower bounds 
of the confidence interval, the reverse transformation is 
applied on the data.

The CI of the correlation coefficient is simply squared to 
obtain the CI of the coefficient of determination R2.

2.2.3 � TCA‑based metrics

TCA is a widely used statistical approach for estimating 
random errors in three independent groups of time 

(6)Pr{𝜇(X) < 𝜃 < 𝜐(X)} = 𝛾 = 100% ∙ (1 − 𝛼)

(7)ne = n ⋅
1 −

√
�x ∙ �y

1 −
√
�x ∙ �y

(8)CIbiasxy = x ± t∗
s√
n

(9)CIubRMSDxy=
± s

√
n − 1

�∗

(10)CIRxy
=

[
e2z

1−�

− 1

e2z
1−�

+ 1
,
e2z

�

− 1

e2z
�
+ 1

]

series that represent different error patterns for the same 
geophysical variable (Stoffelen 1998). In the context 
of evaluating different reference datasets, each with its 
own unknown observation errors, TCA offers a way to 
integrate these independent data sources and compute 
their relative errors, without making any assumptions 
about the specific number of errors. In our case, we 
denote the three independent time series from different 
observing systems as X, Y, and Z, while the true value 
is represented by Θ.

where αi and βi (i = x, y, z) are the first-order additives and 
second-order multiplicative systematic errors, and εi indicates 
the zero-mean random errors (⟨εX⟩ = ⟨εY⟩ = ⟨εZ⟩ = 0) of 
corresponding time series. The estimation of the random error 
standard deviation (ESD) and correlation coefficient can be 
calculated using the covariances of the products:

where ��X and RX are the interested product ESD and 
correlation coefficient of X, respectively. �2

X
 indicates the 

collocated variance of time series X, and σXY, σXZ, and σYZ 
are the covariance between X and Y, X and Z, and Y and Z, 
respectively. For the ESD of time series Y and Z, the identifier 
(notion) items are ��Y and ��Z . The correlation coefficients of 
Y and Z are identified as RY and RZ, respectively.

Furthermore, it is important to ensure that the sample 
sequence is sufficiently long for reliable evaluation when 
calculating TCA-based metrics. Previous studies (Dorigo 
et al. 2010; An et al. 2016) have recommended a sample size 
threshold of 100. To enhance the robustness of the estimates, 
the median of the bootstrapping sampling distribution is 
preferred over direct estimates (Gruber et al. 2020). This 
study presents the spatial distribution of the median metric 
obtained through TCA. Moreover, the CI is directly estimated 
using bootstrapping as a non-parametric method with at least 
1000 re-sampling (Efron and Tibshirani 1986).

(11)
x = �x + �xΘ + �x
y = �y + �yΘ + �y
z = �z + �zΘ + �z

(12)

��X =
√

�2

X
−

�XY�XZ

�YZ

��Y =
√

�2

Y
−

�YX�YZ

�XZ

��Z =
√

�2

Z
−

�ZY�ZX

�YX

(13)

RX =
√

�XY�XZ

�2

X
�YZ

RY =
√

�XY�YZ

�2

Y
�XZ

RZ =
√

�XZ�YZ

�2

Z
�XY
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2.2.4 � Experimental design

The study area is confined to the southern part of the Chinese 
mainland, specifically below of the 38° latitude excluding 
the Tibetan Plateau. The temporal coverage encompasses the 
entirety of the year 2018. The primary objective of this study is 
to assess of the quality of CYGNSS SSM products. To achieve 
this, the validation strategy involves computing relative skill 
metrics by comparing the performance of the CYGNSS data 
to both the in situ measurements and the SMAP data. TCA 
is utilized to determining the random errors associated with 
different datasets. Due to differences in the spatiotemporal 
coverage of various SSM products, the process of space and time 
collocation to obtain matched time series results in reduction in 
the number of data points for each grid cell as more products 
are included in collocation. For this study, the reference data 
sources are limited to SMAP, MERRA2, and Chinese ground 
station measurements. The evaluation of CYGNSS L3 SSM and 
SMAP L3 SSM datasets involved comparing them with gridded 
in situ measurements on a daily scale to assess the performance 
of CYGNSS and SMAP data. It is important to note that the 
CYGNSS product is calibrated using SMAP data as the land 
surface reference “true value.” The TCA-based analysis requires 
the error of three SSM datasets to be independent. Therefore, we 
incorporated MERRA-2 data into the TCA, forming two groups 
of triples to evaluate the uncertainty associated with the current 
CYGNSS-based SSM.

3 � Results

3.1 � Relative evaluation of SSM against ground 
observations

By leveraging the sparse network of ground SSM monitoring 
stations in China, the performance of spaceborne GNSS-R 

estimations can be effectively validated. The high revisit 
cycle and spatial coverage of CYGNSS enable the genera-
tion of relatively continuous time series at evaluated pixel in 
the study area, which can be compared against station data 
and SMAP data through space and time collocation process-
ing. After excluding time series with a length of less than 50, 
the total number of 90723 matching data pairs were obtained 
for CYGNSS, SMAP, and in situ measurements across all 
865 grid cells. Approximately 48% of all valid evaluation 
pixels in raw time series matches had more than 100 data 
points. It is important to highlight that the collocations were 
predominantly determined by the number of in situ stations, 
given the superior spatial coverage of satellite-based data. 
Figure 2 illustrates the number of temporal matches and 
effective sample size with auto-correlation correction for 
each valid grid pixel. Due to the inherent auto-correlation 
nature of soil moisture time series, the number of effective 
data points for CI computation, when considering lag-1 
auto-correlation correction, is relatively smaller. Moving 
forward, we will assess the quality of the CYGNSS-derived 
soil moisture products based on the matched time series at 
each grid cell.

Figure 3 illustrates the spatial distribution of the temporal 
mean bias among the collocated time series derived from 
CYGNSS, SMAP, and in situ data for each valid grid pixel. 
Additionally, the difference between the upper and lower 
confidence limits of the 80% CI is shown to indicate the 
reliability of bias estimate. Comparing the CYGNSS SSM 
to the in situ SSM, positive bias values were observed in the 
east and south regions. This indicates that wetter SSM esti-
mates exist in those areas. Conversely, negative bias values 
were observed over the western and northern regions of the 
study area, indicating that CYGNSS tends to provide drier 
estimates in these areas compared to the in situ SSM. When 
compared to the in situ data, SMAP generally demonstrates 
larger SSM values with positive bias values. Notably, the 

Fig. 2   Temporal matching sample size of CYGNSS, SMAP, and in situ soil moisture samples in each grid cell (a), and effective sample size (b) 
accounting for auto-correlation correction in the raw time series during the year 2018
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spatial distribution pattern of the systematic errors propa-
gated by the SMAP data is followed by the CYGNSS data. 
The temporal bias of CYGNSS SSM shows values close 
to zero in the eastern region of 110°E, while negative bias 
is predominantly observed in the western region of 110°E 
compared to the SMAP data. The SMAP data tends to 
exhibit an overestimated trend in most regions when com-
pared to the in situ data, especially in the majority of areas 
south of Henan Province. However, it shows a positive bias 
in Henan, northern Anhui, and Shandong Province. Since 
CYGNSS SSM is derived through direct calibration from 
surface effective reflectivity using a pre-fitted linear model 
based on SMAP SSM at each individual pixel, it superim-
poses the bias of SMAP data when compared to in situ data. 
As a result, CYGNSS tends to overestimates SSM in areas 
south of Henan Province and east of 110°E. The spatial 
distribution of the CI of the estimated mean bias between 
CYGNSS and in situ, as well as between SMAP and in situ, 
is generally consistent across most grid cells, with a width 
of less than 0.02 cm3cm−3 in the majority of cases.

Figure 4 presents the spatial distribution of R2 between 
CYGNSS, SMAP, and in situ data at each grid pixel, along 
with a corresponding 80% CI. Overall, the R2 values between 
CYGNSS SSM and in situ measurements are significantly 
lower in the majority of regions, while the SMAP product 
demonstrates better consistency with in situ data, exhibiting 
relatively higher R2 values, 61% of evaluation pixels have R2 
values greater than 0.2 for SMAP, compared to only 20% for 
CYGNSS. These findings are in line with expectations, as 
large R2 values are more likely to occur in regions where the 
SMAP data exhibits higher values in comparison to ground 
measurements, as evidenced by the distribution of the R2 
between SMAP and CYGNSS. However, it is observed that 
some regions show declining R2 values the ground measure-
ments. This may be attributed to the factors such as devel-
oped water systems in southern China, vegetation density, 
and increased urbanization, which make CYGNSS observa-
tions more vulnerable to the influence of small inland water 
bodies and structures. It is important to note that the CI 
for R2 depends on its magnitude and is not centered on the 

Fig. 3   Temporal mean bias (a, 
c, e) and corresponding 80% 
confidence interval (b, d, f) 
between the raw surface soil 
moisture time series of CYG-
NSS, SMAP, and in situ data at 
collocated grid pixel
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estimate itself (Gruber et al. 2020). As a result, regions with 
higher R2 values exhibit larger CIs.

Figure 5 illustrates the spatial distribution of ubRMSD 
between CYGNSS, SMAP, and in situ data across each grid 
cell, accompanied by the corresponding 80% CI. The spatial 
map reveals that the largest ubRMSD values of both CYG-
NSS and SMAP, compared to in situ data, are concentrated 
in the Sichuan Basin, Guizhou province, Henan province, 
and the northern part of Anhui Province. Moreover, the mag-
nitudes and spatial distribution characteristics of ubRMSD 
for two data products are similar, with slightly poorer per-
formance observed in some limited areas for CYGNSS. 
Notably, the ubRMSD calculated between CYGNSS and 
SMAP data exhibits similar characteristics as the compari-
son between SMAP and in situ data. This suggests that the 
uncertainty of CYGNSS products primarily stems from the 
calibration process using reference SMAP data. Since the 
errors of CYGNSS-derived SSM calibrated from SMAP data 
are also concentrated in these areas, it results in increased 
ubRMSD values when evaluating CYGNSS SSM against 

in situ data. Consequently, this indicates that the CYGNSS 
SSM retrieval algorithm effectively calibrates the CYGNSS-
derived effective reflectivity to SSM, affirming the potential 
of satellite-based GNSS-R for land remote sensing applica-
tions. It is worth mentioning that the CI also varies based 
on the magnitude of ubRMSD and demonstrates a similar 
distribution for three-group comparison.

Despite the relatively short length of the matched time 
series, the raw time series underwent decomposition to 
remove the influence of seasonal signals. A 35-day sliding 
average window was applied to obtain short-term anoma-
lies, which capture individual drying and wetting events and 
serve as a measure of the dataset’s ability to capture these 
variations. The skill of the SSM anomalies time series, from 
which the mean seasonal cycle is removed, is depicted in 
Figs. 6 and 7. Overall, the SMAP SSM estimates exhibit 
better performance in terms of R2 and ubRMSD values 
compared to CYGNSS, which is consistent with the results 
obtained from the raw time series. Furthermore, the spa-
tial distribution pattern of the anomalies assessment metric 

Fig. 4   Temporal coefficient 
of determination (a, c, e) and 
corresponding 80% confidence 
interval (b, d, f) between the 
raw soil moisture time series of 
CYGNSS, SMAP, and in situ 
data at collocated grid pixels
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closely resembles that of the raw time series, except that the 
ubRMSD values are lower.

A boxplot in Fig. 8 provides a summary of the spa-
tial median and interquartile range for the skill metrics, 
with whiskers representing the 5th and 95th percentiles. 
The difference between the first and third quartiles in the 
figure serves as an indicator of data dispersion. Addition-
ally, Table 2 presents the summary statistics of median 
bias, median R2, and median ubRMSD for daily CYGNSS, 
SMAP, and in-site data, allowing for further comparison. 
With regard to the temporal values of in situ SSM, SMAP 
outperforms CYGNSS significantly, which was expected 
given that CYGNSS SSM relies on SMAP data as the 
reference values in its inversion algorithm. The median 
bias, median R2, and median ubRMSD between CYGNSS 
and in situ data are −0.016 cm3cm−3, 0.088, and 0.057 
cm3cm−3, respectively. For SMAP and in situ data, the 
corresponding values are 0.037 cm3cm−3, 0.250, and 0.046 
cm3cm−3. The variation in the estimation for both CYG-
NSS (80% CI=0.046, 0.075) and SMAP (80% CI=0.036, 

0.070) is comparable. These results align well with previ-
ous validation studies, such as Ayres et al. (2021), Chew 
and Small (2018), Al-Khaldi et al. (2019), and Dong and 
Jin (2021), confirming the accuracy of our data preproc-
essing and metric calculation. When comparing the rela-
tive metrics calculated from the raw time series, the R2 and 
ubRMSD values of short-anomalies time series are lower 
due to the removal of the seasonal cycle through sliding 
averaging. However, CYGNSS still exhibits considerable 
uncertainty in its estimates.

3.2 � TCA‑based evaluation results

In TCA-based evaluation, it is necessary for the errors in 
soil moisture time series to be independent from each other. 
However, as the errors of CYGNSS and SMAP SSM data are 
expected to be correlated, a model-based MERRA-2 SSM 
product was adopted. Consequently, all four data sources, 
including CYGNSS, SMAP, MERRA-2, and in situ data, 
were utilized in the TCA to estimate their random errors. 

Fig. 5   Temporal ubRMSD (a, 
c, e) and corresponding 80% 
confidence interval (b, d, f) 
between raw soil moisture time 
series of CYGNSS, SMAP, and 
in situ data at collocated grid 
pixels
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Two independent data set triplets, CYGNSS-MERRA2-
INSITU and SMAP-MERRA2-INSITU, were constructed. 
In both cases, the in situ data were employed as reference 
values. Additionally, the skill estimates of MERRA-2 data 
are collected in both sets and averaged to enhance the accu-
racy of the results.

Furthermore, in order to conduct the TCA-based evalua-
tion, each triple time series of the grid required a minimum 
of 100 data points. After the collocation processing, only 
300 grid pixels met the requirement, as the number of data 
pairs obtained decreased with the increasing number of col-
located data sources. For each data point on the grid pixel, 
a skill estimate was generated using bootstrapped sampling, 
which provides more reliable results compared to direct esti-
mates. And the 80% CI are provided for corresponding skill.

Figures 9 and 10 display the spatial map of TCA-based 
R2 and the ESD, respectively. The spatial maps reveal dis-
tinct performance patterns among the evaluated datasets. 

Specifically, the TCA-based analysis reveals that SMAP and 
MERRA-2 exhibit satisfactory performance, while CYG-
NSS demonstrates the poorest performance. Across the 
majority of evaluated grid pixels, SMAP and MERRA-2 dis-
play higher R2 values, with MERRA-2 slightly outperform-
ing SMAP. In terms of the R2, generally CYGNSS consist-
ently exhibits the lowest median value, whereas SMAP and 
MERRA-2 data values consistently exceed 0.5. This trend 
is also observed in the ESD analysis. These findings suggest 
that the current version of the CYGNSS product contains 
greater interference information compared to SMAP and 
MERRA-2. Given the similarity in spatial distribution char-
acteristics of the bootstrapped TCA error metrics of short-
term anomalies, the spatial map of the short-term anomalies 
is omitted from the manuscript. However, summary statistics 
for the short-term anomalies are provided in Fig. 11 and 
Table 3, alongside the TCA-based estimates of the original 
time series, for comparative analysis.

Fig. 6   Temporal coefficient 
of determination (a, c, e) and 
corresponding 80% confidence 
interval (b, d, f) between soil 
moisture anomalies of CYG-
NSS, SMAP, and in situ data at 
collocated grid pixels
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Figure 11 displays the median values, interquartile range, 
and whiskers representing the 5th and 95th percentiles of the 
bootstrapped TCA-based error metrics for all grid pixels. For a 
further comparison, Table 3 provides a comparative overview 
of the R2 and ESD values, along with the corresponding 10% 
and 90% confidence limits. Considering the R2 values into 
for both raw time series and short-term anomalies, CYGNSS 
consistently exhibits poorer performance compared to SMAP 
and MERRA-2, and MERRA-2 is superior to SMAP. Notably, 
the median R2 value for raw CYGNSS data is 0.167, which 
is approximately three times less than that of SMAP (0.529) 
and MERRA-2 (0.563). Furthermore, the performance gap 
between CYGNSS and other two datasets widen even further 
for short-term anomalies. In terms of ESD, the median ESD 
for CYGNSS SSM is 0.055 cm3cm−3, as indicated by the sta-
tistics, whereas SMAP and MERRA-2 have lower median 
ESD values of 0.020 cm3cm−3 and 0.021 cm3cm−3, respec-
tively. The range of ESD values for CYGNSS is wider than 
that of the other datasets. Similar to the raw data, CYGNSS 
anomalies exhibit the highest median ESD of 0.046 cm3cm−3, 

compared to 0.017 cm3cm−3 for SMAP and 0.012 cm3cm−3 for 
MERRA-2, as well as a higher interquartile range and confi-
dence bounds than the other two products. Overall, MERRA-2 
slightly outperforms SMAP, while the current CYGNSS SSM 
shows the poorest performance among the three datasets.

4 � Discussion

The accuracy of SSM products derived from spaceborne 
GNSS-R and understanding the spatial and temporal 
distribution of product uncertainty are essential for future 
applications and advancements in retrieval algorithm 
development. In addition to the quantitative evaluation 
discussed earlier, Fig. 12 presents the collocated SSM time 
series of the two representative grid pixels. One of these 
pixels, indexed as 95238 (latitude: 30.966°, longitude: 
106.245°), has the largest data pairs among the evaluated 
pixels and associated with two in-situ stations. The second 
site, indexed as 82728 (latitude: 35.335°, longitude: 

Fig. 7   Temporal ubRMSD (a, 
c, e) and corresponding 80% 
confidence interval (b, d, f) 
between soil moisture anoma-
lies of CYGNSS, SMAP, and 
in situ data at collocated grid 
pixels
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114.461°), includes 10 ground stations, and its density is 
comparable to that of the core validation stations deployed 
specifically for active and passive satellite-based missions. 
During the summer in southern China, precipitation shows 
a significant increase due to the influence of the southeast 
monsoon originating from the low-latitude Pacific. This 
period is characterized as “hot and rainy period.” The 
in situ measurements accurately capture this phenomenon, 
with the observed SSM displaying substantial fluctuations 
through the summer, as presented in Fig. 12. Comparing 
the results, SMAP and MERRA-2 exhibit closer agreement 
with the in situ SSM for the grid pixel indexed as 95238, 
whereas the CYGNSS product demonstrates a relatively 

smooth profile with minor fluctuations. This smoothness 
limits the ability of the CYGNSS product to accurately 
capture the SSM variations over the course of a year. 
Upon manually examination of grids with significant 
errors, it was discovered that CYGNSS sometimes fail to 
properly represent actual SSM changes. Future research 
should focus on investigating the underlying causes of 
this phenomenon, which may include factors such as the 
number of observations per grid pixel, representation 
errors, presence of inland water bodies, surface vegetation, 
surface roughness, and other related factors. Meanwhile, 
CYGNSS also demonstrates the ability to accurately 
capture the temporal variation of SSM at numerous 

Fig. 8   Spatial summary statistics of bias [cm3cm−3] (a), coefficient of determination (b, c), and ubRMSDs [cm3cm−3] (d, e), along with corre-
sponding 10% and 90% confidence limits, for raw soil moisture samples (a, b, d) and anomalies (c, e) of CYGNSS, SMAP, and in situ data

Table 2   The summary of the median of relative skill metrics and confidence interval limits (unit of bias and ubRMSD: cm3cm−3)

Metric median Raw Anomalies

CYGNSS-INSITU SMAP-INSITU CYGNSS-SMAP CYGNSS-INSITU SMAP-INSITU CYGNSS-SMAP

Bias CI10 −0.038 −0.001 −0.069 / / /
Bias −0.016 0.037 −0.048 / / /
Bias CI90 0.003 0.071 −0.025 / / /
R2 CI10 0.024 0.032 0.030 0.014 0.071 0.025
R2 0.088 0.250 0.170 0.059 0.197 0.091
R2 CI90 0.314 0.584 0.423 0.172 0.358 0.211
ubRMSD CI10 0.046 0.036 0.040 0.030 0.027 0.029
ubRMSD 0.057 0.046 0.050 0.035 0.030 0.032
ubRMSD CI90 0.075 0.070 0.068 0.040 0.036 0.037
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stations, providing valuable dynamic information. This is 
evident in the grid pixel indexed as 82728 displayed at 
the bottom of Fig. 12. However, we observed significant 
distribution differences in the CYGNSS estimates, ranging 
from 0.16 to 0.24 cm3cm−3, when compared to the in situ 
measurements and SMAP data. These anomalies are 
illustrated in the scatter density plot in Fig. 13 and were 
not present in previous evaluations using ISMN sites.

The accuracy of the reference data play a crucial role in the 
estimation of SSM using the current semi-empirical retrieval 
algorithm employed by the UCAR/CU team and other 
similar studies based on CYGNSS observations. Therefore, 
when calibrating GNSS-R-based SSM, it is important to 
select reference data sources that exhibit higher levels of 
accuracy. Additionally, it should be acknowledged that there 
is still notable distinctions between spaceborne GNSS-R and 
conventional passive and active satellite-based microwave 
remote sensing sensors. The spatial resolution of the 
spaceborne GNSS-R observable is considered to be higher 
than the reference grid and more sensitive to small inland 

water bodies. The southern part of China, characterized by 
well-developed water systems, higher levels of urbanization, 
and extensive vegetation cover, presents challenges in 
accurately capturing land surface signals. The calibrated 
CYGNSS SSM proxy, which is aggregated in space and time, 
is influenced by many factors such as topography, vegetation, 
surface roughness, observation noise, representative errors, 
and modeling errors. As a result, the uncertainty associated 
with the CYGNSS-derived SSM product exhibits differences 
compared to the SMAP product. Furthermore, it is important 
to note that while the ground SSM measurements are taken 
at a depth is 0–10 cm, the sampling depth of the L-band 
microwave is considered to be 0–5 cm of the top layer of 
soil surface (Njoku and Entekhabi 1996; Chew and Small 
2018). Additionally, when the in  situ measurements are 
matched with gridded products, mismatches can generate 
representative error that impact evaluation results.

SSM exhibits high spatial and temporal variability, and 
the satellite-based GNSS-R technique provides a cost-effec-
tive solution with high spatial and temporal resolution for 

Fig. 9   Median of the boot-
strapped TCA-based coefficient 
of determination (a, c, e) and 
corresponding 80% confidence 
interval (b, d, f) between raw 
soil moisture of CYGNSS, 
SMAP, and MERRA-2 products 
at the collocated grid pixel
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Fig. 10   Median of the boot-
strapped TCA-based ESD (a, c, 
e) and corresponding 80% confi-
dence interval (b, d, f) between 
raw soil moisture of CYGNSS, 
SMAP, and MERRA-2 products 
at the collocated grid pixel

Fig. 11   Spatial summery statistics of the median of the bootstrapped TCA-based coefficient of determination (a, b) and ESD (c, d), along with 
corresponding 10% and 90% confidence limits, for raw soil moisture samples (a, c) and anomalies (b, d) of CYGNSS, SMAP, and in situ data
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Table 3   The summary of 
the TCA-based metrics and 
confidence interval limits (unit 
of ESD: cm3cm−3)

Metric median Raw Anomalies

CYGNSS SMAP MERRA-2 CYGNSS SMAP MERRA-2

R2 CI10 0.044 0.350 0.329 0.028 0.320 0.425
R2 CI50 0.167 0.529 0.563 0.128 0.508 0.670
R2 CI90 0.345 0.742 0.807 0.268 0.688 0.897
ESD CI10 0.030 0.011 0.009 0.027 0.010 0.004
ESD CI50 0.055 0.020 0.021 0.046 0.017 0.012
RSD CI90 0.111 0.030 0.044 0.092 0.025 0.025

Fig. 12   Time series of different 
SSM for grid point indexed as 
95238 including 2 in situ sta-
tions (a) and grid point indexed 
as 82728 including 10 stations 
(b)

Fig. 13   Scatter density plots of 
collocations between CYGNSS 
(a), SMAP (b), and in situ data
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Earth observation. However, the assessment conducted in 
this paper reveals that the CYGNSS SSM products suffer 
from significant random errors, leading to challenges in 
accurately capturing actual SSM changes in certain grid 
cells. It is important to note that the CYGNSS mission was 
not originally intended for land remote sensing applica-
tions. Nonetheless, the calibrated SSM product demonstrates 
potential in capturing the spatial and temporal dynamics of 
SSM. As dedicated terrestrial spaceborne GNSS-R missions 
are launched and retrieval algorithms continue to improve, 
it is expected that GNSS-R can compensate traditional sat-
ellite-based passive and active microwave remote sensing, 
offering wider spatial and temporal coverage for continuous 
Earth observation.

5 � Conclusion

In order to ensure the suitability of SSM for applications 
in various geoscience fields, a meticulous evaluation is 
essential. In contrast to prior validation efforts, this study 
focuses on conducting a comprehensive comparison 
of SSM products derived from CYGNSS, aiming to 
quantitatively assess their uncertainty and gain insights 
into the current effectiveness of the spaceborne GNSS-R 
technique. The assessment procedure adheres strictly to 
recommended guidelines for evaluating satellite-based 
SSM products. All estimated skill metrics are accompanied 
by confidence intervals to provide a reliable estimation 
of their performance. For the first time, the performance 
of CYGNSS-derived SSM was assessed using in  situ 
measurements from the Chinese soil moisture monitoring 
network, and the results were compared with SMAP and 
MERRA-2 data. The relative evaluation was conducted by 
comparing ground measurements from 1824 stations in 
southern China, which were gridded within 865 grid pixels. 
The analysis revealed a low R2 value (median R2=0.088) 
for the raw absolute CYGNSS SSM time series, and the 
ubRMSD was found to be 0.057 cm3cm−3, indicating 
poorer performance compared to the results obtained from 
SMAP against in  situ measurements (median R2=0.25, 
ubRMSD=0.046 cm3cm−3). Thus, the current assessment 
suggests that the quality of CYGNSS SSM product is 
inferior to that of the SMAP product. It is worth noting that 
the linear calibration of CYGNSS SSM proxy using SMAP 
SSM product in a high association between the spatial 
distribution features of data quality in the two datasets. 
The TCA demonstrates notable challenges in achieving 
accurate results. The evaluation based on collocated 
data sets collected from CYGNSS, SMAP, MERRA-2, 
and in  situ resampled daily SSM parameter forms two 

groups of triples in reference to in situ measurement. The 
analysis exposes the presence of substantial random errors 
in the CYGNSS-derived SSM products within the study 
area. Comparatively, the skill of the MERRA-2 exhibits 
a slight advantage over SMAP, with both significantly 
outperforming CYGNSS. Nonetheless, it is important to 
note that CYGNSS data also performed very well in certain 
grid cells, effectively capturing the annual SSM changes 
in the corresponding region. Leveraging the continuous 
availability of spaceborne GNSS-R Earth Observation, the 
integration of SSM products ensures consistent access to 
high-resolution spatial and temporal information, thereby 
serving the needs of Earth science research. The findings 
presented in this study offer a comprehensive assessment 
of the reliability and robustness of recent released daily 
SSM derived from CYGNSS. Although the validations 
were limited to UCAR/CU published products, the results 
demonstrate typical characteristics and possess broad 
representativeness. As such, they can serve as a valuable 
guide for informing future algorithm development and 
facilitating the application of spaceborne GNSS-R SSM 
products.
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