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Abstract: Spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) has been proven 

to be a cost-effective and efficient tool for monitoring the Earth’s surface soil moisture (SSM) with 

unparalleled spatial and temporal resolution. However, the accuracy and reliability of GNSS-R SSM 

estimation are affected by surface vegetation and roughness. In this study, the sensitivity of delay 

Doppler map (DDM)-derived effective reflectivity to SSM is analyzed and validated. The individual 

effective reflectivity is projected onto the 36 km × 36 km Equal-Area Scalable Earth-Grid 2.0 (EASE-

Grid2) to form the observation image, which is used to construct a global GNSS-R SSM retrieval 

model with the SMAP SSM serving as the reference value. In order to improve the accuracy of re-

trieved SSM from CYGNSS, the effective reflectivity is corrected using vegetation opacity and 

roughness coefficient parameters from SMAP products. Additionally, the impacts of vegetation and 

roughness on the estimated SSM were comprehensively evaluated. The results demonstrate that the 

accuracy of SSM retrieved by GNSS-R is improved with correcting vegetation over different types 

of vegetation-covered areas. The retrieval algorithm achieves an accuracy of 0.046 cm3cm−3, resulting 

in a mean improvement of 4.4%. Validation of the retrieval algorithm through in situ measurements 

confirms its stable. 

Keywords: spaceborne GNSS-R; effective reflectivity; soil moisture; vegetation  

attenuation; roughness 

 

1. Introduction 

Soil moisture plays a crucial role in Earth’s surface water cycle and influences various 

hydrological, meteorological, and ecological processes. Accurately measuring soil mois-

ture can aid in forecasting floods, droughts, and other extreme weather events and im-

prove the understanding of climate change [1]. L-band microwave signals have physical 

properties that make them well-suited for remote sensing applications of surface soil 

moisture (SSM). These signals have a longer wavelength and can penetrate through 

clouds and vegetation. Microwave remote sensing has thus become a critical tool for 

measuring SSM, enabling accurate and consistent measurements over large areas. Satel-

lite-based microwave remote sensing has made significant advances in recent years for 

the global-scale SSM monitoring. Dedicated missions such as the Soil Moisture and Ocean 

Salinity (SMOS) mission [2] and the Soil Moisture Active and Passive (SMAP) mission [3] 

use monostatic L-band microwave scatterometer and radiometer instruments to provide 

valuable insights into the dynamics of SSM on a global scale. However, these traditional 

satellite-based sensors have limited spatial resolution, typically around 40 km, and a 
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revisit time ranging from 2–3 days. These limitations prevent their use in high-resolution 

applications, such as precision agriculture and drought monitoring. Innovative technolo-

gies are needed to overcome these limitations and enable high-resolution measurements 

of SSM for various applications. 

The development of Global Navigation Satellite Systems (GNSS) [4] has led to the 

emergence of reflectometric remote sensing using a signal of opportunity transmitted by 

GNSS satellites and reflected by the Earth’s surface, known as GNSS-Reflectometry 

(GNSS-R) [5]. This technology has rapidly gained attention for its great potential applica-

tions in remote sensing. The GNSS-R receiver collects GNSS signals reflected from the 

Earth’s surface, it has lower power dissipation and lighter mass, making it easily deploy-

able on microsatellite platforms. This bridges the spatial-temporal gap in observations left 

by dedicated monostatic SSM satellite-based sensors [6]. Since the reflected signal is influ-

enced by the properties of the geophysical parameters of the interface and exhibits distor-

tions in shape or reflected power, the geophysical parameter retrieval algorithm can be 

developed by identifying the characteristics of the distortion and relating them to relevant 

geophysical parameters. 

The feasibility of the GNSS-R technology in detecting various geophysical parame-

ters in geoscience fields has been validated through numerous demonstration experi-

ments [7]. The first suggestion to use the GNSS-R technique to monitor terrestrial SSM 

came from [8], who was inspired by GNSS-R sea surface wind speed retrieval. Following 

this, several ground, tower, and airborne experiments have been conducted to prove the 

viability of GNSS-R in detecting changes in SSM [9–11]. 

At first, researchers focused on studying the correlation between delay-Doppler 

mapping (DDM) observables and SSM changes. These studies explained the variation in 

time delay waveforms under different wet levels. However, owing to the lack of adequate 

airborne data, GNSS-R-based soil moisture detection was primarily limited to ground-

based studies for the next decade. Single- and dual-antenna pattern receivers have been 

used to detect changes in SSM though interferometric reflectometry (IR) [12]. A soil mois-

ture monitoring network can be established using ground-based GNSS-IR by utilizing 

qualified International GNSS Service Network (IGS) stations. However, the coverage of 

each ground station is limited to a few hundred meters in its immediate vicinity, resulting 

in sparse global coverage for the application of soil moisture data in related studies. More-

over, the fundamental retrieval algorithm for spaceborne GNSS-R and ground-based 

GNSS-IR is different. Ground-based GNSS-IR systems commonly rely on measuring SNR 

observation data from a long arc on a single GNSS satellite frequency. 

The successful launches of the UK Technology Demonstration Satellite-1 (TDS-1) in 

2014 [13] and NASA’s Cyclone GNSS (CYGNSS) mission in 2016 [14] have made space-

borne GNSS-R more accessible. In recent years, using satellite-based GNSS-R measure-

ments to retrieve SSM has gained considerable interest due to the freely available obser-

vations provided by the two missions. Several studies have validated the sensitivity of the 

DDM-derived observables to changes in land SSM [15–17]. The DDM signal-to-noise ratio, 

or the DDM-derived effective reflectivity, has been verified as an indicator to detect 

changes in SSM [18]. Ref. [15] has demonstrated that the DDM observables can detect spa-

tial and temporal variations in land SSM and exhibit consistency over similar land sur-

faces. The sensitivity of DDM observables to SSM compared with other monostatic micro-

wave observation systems was also studied. The sensitivity of DDM observables is influ-

enced by the amount of vegetation cover. Lower Normalized Difference Vegetation Index 

(NDVI) values indicate higher sensitivity and Pearson’s correlation [16]. The attenuation 

of GNSS-R signals by vegetation is mainly caused by branches and trunks in dense forests 

[19]. Additionally, the sensitivity of GNSS-R to SSM can be significantly altered by surface 

roughness and inland water bodies [20]. After conducting exploratory studies, the key 

issues in satellite-based GNSS-R SSM detection have become clearer. The effective reflec-

tivity determined as the feature quantity is capable of responding to changes in soil mois-

ture, but it is also influenced by factors such as vegetation, surface roughness, and terrain. 
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However, this knowledge provides a solid foundation for the further development of in-

version algorithms. 

Modeling the complexity of land surface scattering is challenging due to the presence 

of multiple factors such as surface roughness, vegetation, and topographic relief. Previous 

studies have assumed that the coherent scattering component dominates over the land 

surface and calibrates the effective reflectivity [21]. This assumption holds when the land 

surface has a small-scale roughness compared with the GNSS carrier wavelength, such as 

bare soil. However, as the surface roughness increased, the contribution of incoherent 

scattering became more prominent. Therefore, the scattering field should consider both 

volume scattering from plants and interactions between vegetation and the surface in re-

gions with vegetation cover [22]. Previous studies on spaceborne GNSS-R SSM retrieval 

established empirical statistical models between DDM effective reflectivity and reference 

SSM using linear regression and spatial averaging methods. In addition, the effects of veg-

etation cover and surface roughness were considered in the algorithms in order to obtain 

accurate estimates of SSM. In [23], the changes of effective reflectivity and SSM were re-

gressed using a linear model pixel-by-pixel, whereas [24] established a trilinear regression 

model between effective reflectivity, vegetation opacity, roughness coefficient, and SSM 

from all pixel matched parameters. To improve SSM inversion accuracy, many studies 

have attempted to use machine learning and deep learning methods [25]. 

Although space-based GNSS-R SSM retrieval algorithms have been developed, few 

studies have assessed the impact and correction of vegetation and surface attenuation on 

SSM retrieval from existing models. Vegetation cover and surface roughness can affect 

soil moisture measurements by influencing the amount of intercepted rainfall and rate of 

water infiltration into the soil. Different land cover types, such as forest, cropland, and 

grassland, have different vegetation cover and surface roughness and can therefore have 

different soil moisture characteristics. This study aimed to retrieve land surface soil mois-

ture using CYGNSS data with correcting vegetation cover and surface roughness on dif-

ferent land cover types and evaluate the impact of these factors on GNSS-R SSM retrieval. 

The adopted data and method for spaceborne GNSS-R SSM remote sensing are introduced 

in Section 2. Section 3 presents the results and the effects of vegetation and roughness. A 

discussion is presented in Section 4. Finally, main conclusions are given in Section 5. 

2. Data and Methods 

2.1. Dataset 

2.1.1. CYGNSS Data 

The CYGNSS mission consists of eight microsatellites, which were initially designed 

to detect ocean surface winds, and the specular points of the observed DDM are located 

between 38° south and north latitude. The study reported in this paper utilized the V2.1 

version of CYGNSS Level 1 data, which was made available in March 2017. To retrieve 

soil moisture parameters, only ground-based samples were used. The dataset covers the 

entire year of 2018, with the first six months of data utilized to develop the SSM retrieval 

model, and the remaining data used to evaluate the accuracy of the GNSS-R-derived SSM. 

Data were downloaded from the Physical Oceanography Distributed Active Archive Cen-

ter (PO.DAAC). 

2.1.2. SMAP Product 

The referenced SSM data used in this study are the SMAP v008 Level-3 SSM product 

acquired from the National Snow and Ice Data Center, which is a daily update with a 

spatial resolution of 36 km × 36 km Equal-Area Scalable Earth-Grid 2.0 (EASE-Grid2). 

While data from satellite descending passes (a.m.) and ascending passes (p.m.) were saved 

separately in the product files, they were averaged to provide a daily SMAP SSM product 

in this study. Figure 1 displays the SMAP SSM data on 1 January 2018, showing the data 

coverage and typical spatial variation of the SSM. The vegetation opacity and roughness 
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coefficient parameters included in the SMAP product were also averaged to facilitate sub-

sequent vegetation and surface roughness attenuation correction. To evaluate the accu-

racy of the derived SSM for different land cover types, land cover classification data were 

also used. 

 

Figure 1. Averaged SMAP Level-3 soil moisture from satellite descending passes and ascending 

passes on 1 January 2018. 

2.2. Methods 

2.2.1. SSM Retrieval Method from GNSS-R 

Spaceborne GNSS-R SSM remote sensing is based on the sensitivity of effective re-

flectivity to surface permittivity, which is primarily influenced by SSM. Several semi-em-

pirical models have been developed to estimate the dielectric constant of surfaces. Figure 

2a shows the complex permittivity under different SSM conditions at GPS L1 frequency 

using the Dobson model [26]. The results indicate that the imaginary part of the complex 

permittivity is almost impervious to the SSM, whereas the real part is strongly influenced 

by it. For instance, when the mass fraction of sand content was 0.8, the mass fraction of 

clay content was 0.07, and the soil bulk density was 1.25 g·cm−3, the change in SSM led to 

significant variations in the real part of permittivity. Surface reflectivity can be derived as: 
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where L R  stands for the left circular polarized scattering with the incoming right circular 

polarized signal. 
v v  and 

h h  are the vertical and horizontal linear Fresnel reflection 

coefficient; they are the function of surface complex dielectric constant r  and signal inci-

dence angle  . By combining the semi-empirical dielectric constant model, a physical 

relationship between SSM and corresponding reflectivity can be obtained. Figure 2b 

shows the relationship at various signal incidence angles. It can be observed that the sur-

face reflectivity exhibited a monotonous increase as the soil moisture content increased. 

Furthermore, a larger incidence angle had a more significant impact on the reflectivity 

value. 

The DDM is a fundamental observable of spaceborne GNSS-R. It is generated by the 

cross-correlation of the reflected signals and local replica code of the receiver, which maps 

the scattered power over a time delay and Doppler frequency shift range. During signal 

processing in current CYGNSS mission, the coherent integration time of DDM is often set 

at 1 ms, followed by 0.5 s to 1 s of incoherent integration to reduce speckle and thermal 

noise within a short-time correlation. The scattering mechanisms over the sea surface can 
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be approximately explained by the Z-V model [27]. The difference in surface scattering 

between the ocean and land is that the former is dominated by an incoherent component, 

whereas the latter is dominated by a coherent component. This implies that the primary 

components of the power dispersed over land are from the specular reflection direction, 

corresponding to the first Fresnel zone around the specular point on the real ground sur-

face. 

 

Figure 2. Complex permittivity under different soil moisture (a) and the relationship between soil 

moisture and reflectivity at the different signal incidence angle (b). 

Previous studies have demonstrated the effectiveness of both the DDM SNR and 

DDM-derived reflectivity in detecting variations in SSM. The DDM SNR is calculated as 

the ratio, expressed in decibels, between the highest value in a single DDM bin and the 

average raw noise counts per bin. Reflectivity, in turn, is a function of surface permittivity, 

which is mostly influenced by SSM [28]. Wet surfaces exhibit a greater dielectric constant 

and reflectivity than dry surfaces do. An inversion methodology was developed to estab-

lish a mapping relationship between the DDM SNR or reflectivity and the surface SSM. 

Typically, the scattering field over land surfaces contains both incoherent and coherent 

scattering components that can be simultaneously received by the spaceborne GNSS-R 

receiver. This study assumes that coherent reflection predominates throughout the land 

surface, and that the first Fresnel zones near the specular point are homogeneous. Conse-

quently, the received power asymptotically tends toward the value obtained using free-

space propagation weighted by the reflection coefficient, and the total path length of the 

bistatic radar system operation equals the sum of the path lengths [29]. Finally, DDM re-

flectivity, also known as effective reflectivity, can be calibrated using the radar equation 

for a coherent signal [30] 
2 2

2

(4 ) ( )
( ) coh ts rs

r t t

P R R

G PG
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
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where 
c o hP  is the received DDM peak power, 

t tP G  indicates the GNSS equivalent iso-

tropically radiated power (EIRP), 
tP  is the GNSS satellite transmit power, 

tG  is the 

GNSS satellite antenna gain, 
rG  is the gain of the receiver antenna,   is the carrier 

wavelength of GNSS signal, 
tsR  and 

rsR  are the distances from the GNSS transmitter to 

the specular point and specular point to the receiver, respectively, and   is the incidence 

angle of the signal at the specular point. The GNSS-R receiver onboard the spacecraft di-

rectly generates the DDM in the unit of the processing count. However, to convert the 

count into received power in watts, a series of precise calibrations is necessary [31]. For-

tunately, all parameters required in (3) are included in the CYGNSS Level 1 data product. 

It is important to note that, under the coherent assumption, the spatial resolution of indi-

vidual observations from spaceborne GNSS-R is primarily determined by the bistatic ra-

dar observing geometry and is approximately 0.6 times the initial Fresnel zone size [28]. 
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2.2.2. Effects of Surface Vegetation and Roughness 

The reflectivity of the terrain surface can be affected by various factors, including the 

roughness of the surface and the presence of vegetation. When the GNSS signal is trans-

mitted towards an area with vegetation, the signal can be attenuated by the plants, as 

shown in Figure 3. The signal passes through the plant canopy twice, resulting in intensity 

attenuation each time [32]. In addition to vegetation, the rough surface of the ground can 

also scatter the GNSS signal in different directions, weakening the intensity in the direc-

tion of the specular point in accordance with energy conservation. To minimize the impact 

of these perturbing factors, it is important to carefully consider the retrieval algorithm. In 

passive microwave radiometry, the widely used tau-omega model is a basic zero-order 

model [33] that accounts for vegetation attenuation with an exponent item and corrects 

the effect of surface roughness [34]. 

( ; , , ) ( ; ) ( ; ) ( ; )LR v VWC rough vm k A A k m           (4) 

2 sec( ; )VWCA e      (5) 

2 2(2cos ) ( )( ; ) k
roughA k e      (6) 

where   is the incidence angle of the transmitted signal, 
vm  is the soil moisture, k  is 

the wavenumber,  is the standard deviation of surface height, k  together represents 

the roughness coefficient of the land surface,   indicates the vegetation optical depth 

(VOD), 2  means the two-way vegetation opacity, and 
VWCA , 

r o u g hA  indicate the power 

attenuation from land cover vegetation and surface roughness, respectively. Vegetation 

opacity can be stated as b VWC   (b is a proportionality value that depends on both the 

vegetation structure and the microwave frequency; VWC is related to the vegetation water 

content). The method for calculating VWC employs a series of land cover-based equations 

to estimate the combined foliage and stem VWC from NDVI data [3]. The vegetation at-

tenuation of the L-band microwave signal is mainly due to the trunks and branches, 

whereas the leaves are nearly transparent [35]. Therefore, the retrieval accuracy degrades 

in the dense forest regions. The roughness coefficient depends on the polarization, fre-

quency and geometric characteristics of the ground surface and is parameterized to the 

standard deviation of the surface height. The roughness coefficient was obtained from a 

look-up table provided in the SMAP manual [3]. In this study, the two models were used 

directly to correct for the effects of vegetation and surface roughness attenuation in space-

borne GNSS-R SSM retrievals. The effects of these models for different land cover types 

were analyzed to evaluate their performance in CYGNSS SSM retrieval. 

 

Figure 3. Bistatic radar geometry of spaceborne GNSS-R remote sensing soil detection. 

Despite the nonlinear correlation between soil moisture and reflectivity according to 

the dielectric constant and Fresnel equation models, in practice, the range of annual soil 
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moisture variation is often limited for most land surfaces. Therefore, linear regression 

models are often used, as shown in [23]. In this study, a GNSS-R SSM retrieval model was 

proposed, which also uses a linear model for each grid cell. This model directly regresses 

soil moisture and aggregated effective reflectivity. The flow chart in Figure 4 presents the 

data processing and inversion algorithm-building process. As part of the GNSS-R SSM 

retrieval process, the daily CYGNSS Level 1 product is first screened for valid data using 

specific criteria. These criteria include ensuring that the delay bin of the DDM peak power 

falls within a 7–10 bin interval, the DDM SNR is greater than or equal to 2, the receiver 

antenna gain in the specular point direction is greater than 0 dB, and the specular inci-

dence angle is less than or equal to 60°. Once the nonconforming data are removed, the 

effective reflectivity is computed at each analog power DDM peak using Equation (3). It 

is worth noting that the noise floor was not considered in the computation of the effective 

reflectivity because the results were worse when the peak power was subtracted from the 

noise floor provided in the CYGNSS product. The incidence angle of the GNSS signal is 

also an important factor affecting GNSS-R reflectivity, and its sensitivity to SSM decreases 

as the incidence angle increases, as shown in Figure 2b. To correct this, the approach pro-

posed in [27] was applied. The individual reflectivity values were then gridded into a 36 

km × 36 km EASE-Grid2 grid using mean value to match the SMAP SSM product on the 

same day, generating training data sample pairs. 

 

Figure 4. Spaceborne GNSS-R SSM retrieval algorithm flow chart. 

Correction for the attenuation effects of vegetation and surface roughness on effec-

tive reflectivity was made using the vegetation and roughness coefficient parameters pro-

vided in the SMAP product, as described in Equations (5) and (6), respectively. A grid 

point value was marked as invalid in the collocation process if the total number of specu-

lar effective reflectivity values in the same grid cell was less than five. The grid cells 

marked in the SMAP product as inland, urban, and hilly areas were also filtered. Once the 

masking process is complete, the linear model is fitted pixel-by-pixel using all collocated 

training datasets. The entire models can be represented as follows. 

GNSS R
v


griddedM =AΓ +B  (7) 

The established linear model included a coefficient matrix A , an intercept matrix B, the 

gridded GNSS-R reflectivity 
griddedΓ , and the predicted SSM from GNSS-R, denoted as 

GNSS R
v

M . The formed model can be used to predict daily SSM values in the future. 

3. Results and Analysis 

3.1. SSM Retrieval from GNSS-R 

To evaluate the performance of the SSM retrieval algorithm, we conducted an exper-

iment using the training dataset to regress the GNSS-R-derived effective reflectivity with-

out vegetation and surface roughness correction. Regression was performed by generat-

ing a linear model for each EASE-Grid2 grid cell using the half-year spatial average effec-

tive reflectivity and SSM from the SMAP product. Figure 5 displays the resulting slope of 
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the linear model was relatively smaller in arid regions where effective reflectivity was 

very low and soil moisture content was small and stable, whereas the intercept tended to 

be negative in such regions. Figure 5b clearly illustrates this trend. 

 

Figure 5. The slope (a) and intercept (b) of the linear SSM retrieval model. 

Figure 6 depicts the density scatterplot of the matched SMAP SSM and CYGNSS-

derived SSM from the testing dataset and the retrieval error distribution. The black dashed 

line represents a 1:1 diagonal and the red line shows the linear regression line in Figure 

6a. The total number of SSM data pairs matched for model testing was 7,736,769. The re-

sults indicated that the total bias and RMSD of the CYGNSS-derived SSM were 0.009 

cm3cm−3 and 0.048 cm3cm−3, respectively. The slope of the linear regression equation be-

tween the reference SSM and the inversed SSM was 0.981, and the scatter points were 

closely aligned with the linear regression line, suggesting a good match between the two 

datasets. The distribution of bias mainly falls between −0.05 cm3cm−3 and 0.05 cm3cm−3, 

confirming the accuracy of the retrieval model. 

 

Figure 6. Density scatterplot of GNSS-R derived SSM and SMAP SSM (a) and probability density 

distribution of inversed SSM deviation (b). 
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Figure 7a,b show the spatial map of the relative errors between the CYGNSS-re-

trieved SSM and SMAP SSM for each EASE-Grid2 grid cell from the testing dataset. The 

blue area indicates where GNSS-R underestimates the surface SSM, whereas the red area 

represents where it overestimates the SSM. In Figure 7a, the average bias is essentially 

small and mainly falls between −0.05 cm3cm−3 and 0.05 cm3cm−3. Figure 7b shows that the 

soil moisture inversion accuracy is less than 0.06 cm3cm−3 in most areas, except for a few 

wetter regions such as the Sudanian Savanna and Peninsular India. However, the stand-

ard deviations (STD) of CYGNSS-derived SSM and SMAP SSM in the last half-year of 2018 

as shown in Figure 7c,d, respectively, indicate good consistency, demonstrating that 

CYGNSS can detect daily variation in soil moisture. Nonetheless, large deviations still 

exist in some areas, such as central and eastern parts of South America and central Africa. 

 

Figure 7. Bias (a) and RMS (b) of GNSS-R retrieved SSM, STD of SMAP SSM (c) and GNSS-R in-

versed SSM (d). 
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3.2. Effects of Vegetation and Roughness 

This section evaluates the performance of three retrieval configurations under differ-

ent land cover types defined by the International Geosphere-Biosphere Programme 

(IGBP) to assess the impact of vegetation and surface roughness on the quality of 

CYGNSS-derived SSM. The first configuration involves directly using effective reflectivity 

to construct retrieval models, ignoring the effects of vegetation and roughness, as de-

scribed in Section 3.1. The second configuration modifies the specular effective reflectivity 

with vegetation transmissivity for vegetation attenuation, using Equation (5). The third 

configuration further corrects for surface roughness attenuation using the roughness co-

efficient in Equation (6). 

Compared to the first configuration, the accuracy of the retrieved SSM improved 

marginally when the effective reflectivity was modified with the vegetation effect. The 

bias and RMSD of the GNSS-R-derived SSM were 0.009 cm3cm−3 and 0.046 cm3cm−3, respec-

tively. However, there was no significant improvement when the third configuration was 

utilized compared to the second configuration. 

The retrieval accuracy of the GNSS-R SSM retrieval model over different land cover 

types was evaluated by comparing the results with those of the SMAP product. The sta-

tistical results are presented in Table 1. The highest retrieval error was found for the land 

cover with cropland/natural vegetation mosaics, and woody savannas, whereas barren 

and open shrublands showed the best inversion performance. The discrepancy in retrieval 

accuracy among different land cover types is partly due to the variation in the volume of 

local SSM content. After correcting for vegetation attenuation, the performance of the re-

trieval algorithm improved on vegetated terrain covered with deciduous-broadleaf-for-

est, mixed-forest, woody savannas, savannas, croplands, grasslands, and cropland/natu-

ral vegetation mosaics. The mean improvement was 4.4%. It is worth noting that the spa-

tial resolution of the CYGNSS observations was higher than 36 km. Therefore, using the 

spatial average method for surface geophysical parameter processing instead of true val-

ues on the GNSS-R specular point may explain the lack of significant improvement with 

vegetation and roughness correction. Additionally, the uncertainty of the SMAP SSM 

product itself could have influenced the results. 

Table 1. CYGNSS soil moisture retrieval accuracy over different landcover types (unit: cm3cm−3). 

Landcover ID Land Classification 

No Vegetation and 

Roughness Correction 

Add Vegetation 

Correction 

Add Vegetation and Roughness 

Correction 

Bias RMSD Bias RMSD Bias RMSD 

4 
Deciduous-Broadleaf-

Forest 
−0.0040  0.0555  −0.0102  0.0544  −0.0100  0.0543  

5 Mixed-Forest −0.0083  0.0478  −0.0051  0.0466  −0.0051  0.0465  

6 Closed Shrublands −0.0058  0.0420  −0.0062  0.0408  −0.0060  0.0409  

7 Open Shrublands −0.0045  0.0345  −0.0048  0.0344  −0.0048  0.0344  

8 Woody Savannas −0.0090  0.0710  −0.0103  0.0679  −0.0102  0.0677  

9 Savannas −0.0028  0.0619  −0.0047  0.0579  −0.0047  0.0577  

10 Grasslands −0.0160  0.0580  −0.0164  0.0557  −0.0164  0.0556  

11 Wetland 0.0025  0.0667  0.0012  0.0656  0.0014  0.0657  

12 Croplands −0.0188  0.0667  −0.0127  0.0606  −0.0126  0.0605  

14 
Cropland/Natural 

Vegetation Mosaics 
−0.0314  0.0722  −0.0268  0.0707  −0.0264  0.0703  

16 Barren −0.0068  0.0285  −0.0068  0.0285  −0.0068  0.0285  
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3.3. Validation of Soil Moisture by In Situ Observation 

The reliability of the GNSS-R SSM retrieval methodology and the performance of 

attenuation correction were evaluated by comparing the results with in situ SSM data 

from the International Soil Moisture Network (ISMN). The in situ SSM measurements 

have a raw time resolution of 10 min and a probe depth of 0.0~0.05 m. To align the SSM 

data from different sources, the in situ measurements were resampled to a daily average 

value. The GNSS-R SSM values were selected for the nearest grid point values to the cor-

responding in situ station. Figure 8 compares the time series from the in situ SSM, SMAP 

SSM, and GNSS-R-derived SSM for both the training and testing data. The Yuma_27_ENE, 

Knox_City, and Vernon sites exhibited high consistency between the measured and pre-

dicted SSM. The predicted SSM from the developed linear model remained stable for six 

months of extrapolation, although there was a significant systematic difference between 

the predicted SSM and in situ measurements at the Newton_8_w station. This discrepancy 

may be due to representative errors for different spatial resolution scales. 

Table 2 presents the validation results at the four different sites using various correc-

tion strategies. The Yuma_27_ENE station, located in a very arid area, exhibited relatively 

stable SSM levels throughout the year, and the CYGNSS-derived SSM also showed high 

stability. For the grassland stations of Knox_City and Vernon, the results showed a some-

what contradictory situation, with the retrieval model underestimating the last season of 

2018 at Vernon. The model performed well at Knox_City, whereas the SMAP SSM exhib-

ited the opposite behavior. The addition of attenuation corrections had an impact on the 

derived SSM at the two stations. At the Newton_8_w station, the vegetation correction 

improved the overall statistical RMSD value of the retrieved SSM, which was 0.082 

cm3cm−3 compared to 0.076 cm3cm−3 for the SMAP SSM. Although there is a difference be-

tween global statistics due to the different spatial resolutions of the two datasets and the 

relatively small testing sample, the in situ validation confirms the ability of spaceborne 

GNSS-R reflectivity to sense changes in SSM compared to the SMAP radiometer. The sys-

tematic error for absolute SSM retrieval can be addressed using rescaling methods with 

larger datasets [36]. 

Table 2. The CYGNSS soil moisture retrieval accuracy at different in situ stations (unit: cm3cm−3). 

Station Scene Name 

No Vegetation and 

Roughness Correction 

Add Vegetation 

Correction 

Add Vegetation and 

Roughness Correction 

Bias RMSD Bias RMSD Bias RMSD 

Yuma_27_ENE Open Shrubland −0.015 0.030 −0.015 0.030 −0.015 0.030 

Knox_City Grassland 0.015 0.038 0.020 0.039 0.021 0.039 

Vernon Grassland −0.051 0.069 −0.054 0.069 −0.053 0.070 

Newton_8_W Cropland 0.092 0.057 0.107 0.046 0.108 0.047 
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Figure 8. Time series of inversed SSM, SMAP SSM, and in situ SSM comparison at in situ SSM sta-

tions Yuma-27-ENE (a), Knox City (b), Vernon (c), and Newton-8-W (d). 

4. Discussion 

This study reports on the results of the CYGNSS SSM retrieval algorithm and ana-

lyzes the performance of vegetation and surface roughness attenuation correction across 

different land cover types. The findings indicate that spaceborne GNSS-R can be used for 

SSM estimation, with the accuracy of CYGNSS-derived SSM being relatively stable. The 

daily CYGNSS-derived SSM shows small changes in temporal bias and RMSD against 
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SMAP SSM during the testing period, as illustrated in Figure 9, with RMSD values of less 

than 0.06 cm3cm−3. This indicates the stability and reliability of the model. However, on 13 

December 2018 there was a rapid increase in the bias and RMSD metrics, which was 

thought to be related to the CYGNSS observation quality on that day. The inversion error 

in various SSM bins shows that CYGNSS increasingly overestimates the ground SSM 

when the SSM is greater than 0.22 cm3cm−3. While the RMSD at different bins indicates a 

steady increase, the uncertainty remains stable at larger than 0.05 cm3cm−3 when the refer-

ence value is greater than 0.14 cm3cm−3. Based on the assessments conducted, it can be 

inferred that the accuracy of soil moisture estimates derived from CYGNSS is comparable 

to that of satellite-based radiometers. 

 

Figure 9. Testing data daily error statistic (a) and total retrieval error at different soil moisture bins 

(b). 

In the retrieval of SSM using spaceborne GNSS-R, the dielectric properties of the land 

interface are affected by SSM, vegetation and surface roughness. The effective reflectivity 

of GNSS-R is directly related to its dielectric property. In regions with dense vegetation, 

vegetation attenuation can significantly impact SSM retrieval. While the tau-omega model 

has been used in previous research, it is not suitable for terrains with dense vegetation. To 

improve the accuracy of GNSS-R estimates, a better understanding of the scattering pro-

cess over rough surfaces is necessary, and more reliable reference geophysical parameters 

must be selected. Furthermore, the entire GNSS-R inversion algorithm must be improved 

to accurately quantify the impact of other factors on retrieval accuracy. Vegetation correc-

tion improved the SSM inversion results from 0.048 cm3cm−3 to 0.046 cm3cm−3. However, 

when applying the correction method to various land cover types, the impact on CYGNSS 

SSM retrieval was not significant, indicating inconsistency with previous simulation re-

sults [37]. The limited improvement observed with the SMAP roughness parameter sug-

gests that factors such as correction model, uncertainty in the SMAP parameters, and rep-

resentation errors may have contributed to this outcome. 
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5. Conclusions 

This study examines the potential of spaceborne GNSS-R for estimating land SSM. 

An empirical statistical model was developed using SMAP Level-3 SSM products as ref-

erence data. The accuracy of the CYGNSS-based retrievals of SSM was adversely affected 

by the attenuation effects of vegetation and surface roughness. However, after correcting 

for these effects, modest improvements were observed in SSM retrieval over vegetated 

areas. Nonetheless, the surface roughness correction method was found to be limited due 

to the absence of reliable small-scale surface roughness data and refined correction meth-

ods. The derived SSM had an accuracy of 0.046 cm3cm−3 with vegetation correction. The 

retrieval model developed in this study demonstrated stable performance, as assessed us-

ing in situ and SMAP data. It is evident that the current state of spaceborne GNSS-R SSM 

remote sensing requires the use of external auxiliary data for statistical modeling, and the 

impact of additional terrestrial geophysical factors must be carefully quantified. Future 

research should focus on developing models for vegetation and surface roughness correc-

tion in satellite-based GNSS-R to improve our understanding of the effects of vegetation 

cover and surface roughness on soil moisture variability over different land cover types. 

This study contributes to the advancement of remote sensing technology for soil moisture 

measurements. 
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