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Abstract— Recent advances in cyclone global navigation satel-
lite system (CyGNSS) data have significantly improved the
extraction of monthly surface water fraction (SWF), with neural
networks being widely used for large-scale water body map-
ping based on global navigation satellite system-reflectometry
(GNSS-R) signals. However, inherent noise in CyGNSS signals,
such as multipath effects and interference, presents substantial
challenges to the accuracy of SWF estimation. Diffusion models,
an emerging class of generative deep learning techniques, have
shown remarkable capabilities in capturing complex data dis-
tributions. By leveraging an iterative process of noise addition
and removal, these models demonstrate significant advantages in
processing low signal-to-noise ratio data, offering a novel method-
ology for precise SWF estimation from CyGNSS data. This
study introduces DiffWater, a framework designed to address
the unique characteristics of CyGNSS data and systematically
explore the applicability of conditional diffusion models for
remote sensing tasks. Utilizing a composite reference dataset,
which includes the global surface water (GSW) dataset and
the global surface water dynamics (GLAD) dataset as training
targets, DiffWater enhances the objectives of conditional diffusion
models by integrating advanced conditional feature extractors
and implementing multilevel fusion of conditional and temporal
features, thereby achieving significant improvements in SWF esti-
mation performance. Comprehensive experimental evaluations on
the reference dataset demonstrate that DiffWater achieved the
best performance, with a root-mean-squared error (RMSE) of
4.987% and a correlation coefficient (R) of 0.946. Compared to
state-of-the-art SWF estimation methods, the proposed approach
demonstrated significant improvements in both quantitative and
qualitative results.
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I. INTRODUCTION

REGULAR, accurate, and widespread estimates of sur-
face water fraction (SWF), particularly in pan-tropical

regions, are crucial for applications such as hydrological mod-
eling and analysis of the Earth’s water cycle [1], [2]. Surface
water is closely linked to greenhouse gas emissions, ecosys-
tem biodiversity, and various life forms [3]. For instance,
aquatic ecosystems are estimated to account for 41%–53%
of global methane emissions, with rivers, lakes, and reservoirs
collectively contributing to half [4]. However, surface water
estimates are significantly affected by errors arising from
uncertainties in the distribution of small water bodies [5].
Furthermore, the presence, extent, and quantity of surface
water exhibit high variability in both space and time, rendering
monitoring efforts a considerable challenge [6]. Therefore,
accurate, effective, and timely monitoring of surface water and
its spatiotemporal evolution has become a crucial and complex
task.

Research on the use of remote sensing sensors to detect
surface water has made significant progress. Remote sens-
ing technology provides an effective means for continuously
monitoring surface water data at regional and global scales,
with data primarily being sourced from Moderate Resolution
Imaging Spectroradiometer (MODIS) [7], [8], [9], the Landsat
missions [10], [11], [12], and the Sentinel-1/2 missions [13],
[14], [15], [16]. Notably, the Landsat mission, with its
30-m spatial resolution and 40 years of historical data,
is crucial for global water resource monitoring [17]. Landsat
imagery is vital for highlighting the significant impacts of
climate change and human activities on global water resources.
However, optical remote sensing is hindered by cloud cover
and vegetation, resulting in a significantly lower number of
cloud-free satellite images available during the rainy season
compared to the dry season [11]. This leads to a lack of data,
thus limiting its applicability to tropical regions, especially
during the rainy season. Furthermore, the spectral characteris-
tics of water surfaces are quite complex globally, as they vary
with depth, dissolved substances, and chlorophyll content [18].
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Different types of water bodies and pollutants can significantly
affect reflectance, thereby impacting the interpretation of
remote sensing data. The 30-m spatial resolution and 40 years
of historical data from Landsat imagery are crucial for global
water resource monitoring [19], [20]. The global surface water
(GSW) dataset [11] provides a compilation of monthly water
extent data globally from 1984 to 2021, while the global
land analysis and discovery (GLAD) dataset [12] offers a
compilation of monthly water extent data from 1999 to 2021.
Reports indicate that the GLAD dataset outperforms the GSW
dataset in identifying water bodies, and both can complement
each other [18].

In contrast, microwave remote sensing is less susceptible
to the aforementioned limitations and can provide all-weather
monitoring [21], [22]. Microwave sensors can penetrate clouds
and facilitate effective monitoring under various weather
conditions. However, passive radiometers typically exhibit a
coarse spatial resolution (25–50 km), which poses a challenge
for high-resolution water system detection [23]. Conversely,
active microwave platforms, such as synthetic aperture radar
(SAR) and radar altimeters, possess suitable spatial resolution,
but their revisit period is typically long [13]. For example,
Sentinel-1 has a spatial resolution ranging from a few meters to
tens of meters, depending on the operating mode, with a revisit
time of six days at the equator and a longer time at higher
latitudes [24], [25]. The surface water microwave product
series (SWAMPS) dataset [26] represents one of the longest
records (over 20 years) of global water coverage, obtained
through the combination of passive and active microwave
observations. The revisit time and spatial resolutions of this
dataset are approximately three days and 25 km, respectively.
Although it has been successfully applied in various contexts,
its low level of detail renders it unsuitable for fine-scale or
regional water mapping.

Global navigation satellite system reflectometry (GNSS-R),
recognized as an efficient remote sensing tool, has garnered
significant attention in recent years. GNSS-R operates in
a multistatic mode, with the spaceborne system collecting
forward-scattered signals from surface regions near specular
point (SP) opportunistically. Due to the dynamic motion
of both the transmitter and receiver orbits, the ground tra-
jectories of satellites display a quasi-random distribution.
GNSS-R collects information regarding surface characteristics
by exploiting the unique properties of GNSS signals when
reflected from the Earth’s surface [18], [27], [28]. Compared
to other remote sensing instruments, GNSS-R offers signifi-
cant advantages in terms of cost-effectiveness and all-weather
performance [29] and has been widely applied in ocean
wind measurement [30], [31], altimetry [32], soil moisture
estimation [33], [34], ice and snow monitoring [27], [35],
and many other fields. Moreover, numerous advanced deep
learning models have been applied for GNSS-R applications.
For example, Chu et al. [36] proposed the heterogeneous mul-
timodal deep learning (HMDL) method, which significantly
improved the accuracy and robustness of GNSS-R sea surface
wind speed estimation. Furthermore, Qiao and Huang [37]
developed a Transformer-based WaveTransNet network, which
captures long-range dependencies in the delay–Doppler map

(DDM) through the Transformer encoder and incorporates an
auxiliary parameter feature extraction branch, enhanced by
an attention mechanism, to substantially improve GNSS-R
data inversion performance for global significant wave height.
A more comprehensive review of the applications of deep
learning methods in the field of GNSS-R can be found in [38].

Furthermore, the substantial potential of GNSS-R for sur-
face water mapping has been confirmed. The L-band signal
employed by GNSS-R exhibits strong canopy penetration
capability, as evidenced by the sensitivity of cyclone global
navigation satellite system (CyGNSS) to the tributaries of
the Amazon River. It can effectively detect water bodies
even beneath dense vegetation cover [39]. Due to these
characteristics, GNSS-R technology is extensively utilized
in hydrological fields such as flood detection [40], wetland
monitoring [41], [42], and inland water body mapping [18],
[43], [44], [45], [46], [47], [48]. Recent studies have further
improved the capability of GNSS-R for water detection by
integrating multiple variables and applying advanced machine
learning techniques. For instance, Yan et al. [18] integrated
GNSS-R data with multisource auxiliary variables (e.g., soil
moisture, vegetation optical depth, and geographic loca-
tion), employed the bootstrap aggregation of regression trees
(BARTs) method to estimate the monthly SWF at a spatial
resolution of 0.025◦, and validated the results with SWAMPS,
GSW, GLAD, and ground measurement data. The results
demonstrate that CyGNSS-based SWF estimation serves as
an effective complement to existing microwave and optical
data products, offering a broader spatial coverage and an
improved accuracy. However, this method primarily relies on
local information for estimation, making it challenging to
capture the global contextual characteristics of water bodies.
In contrast, semantic segmentation technology employs end-
to-end learning to more effectively integrate neighborhood
information, thereby more accurately capturing the spatial
distribution of water bodies. In this regard, Chen and Yan [48]
designed an enhanced U-Net architecture based on the Swin
Transformer and context module, which effectively extracts
water body distribution characteristics, further highlighting the
potential and advantages of deep learning in SWF estimation
tasks.

Although existing research demonstrates that combining
GNSS-R data with multisource remote sensing data can signif-
icantly improve the accuracy of SWF estimation, substantial
errors remain when relying solely on GNSS-R data [48]. The
root cause of these errors lies in the fixed biases inherent
in current model training methods. Traditional convolutional
neural networks (CNNs) and Transformer-based models typ-
ically perform SWF estimation directly on GNSS-R data.
However, these models exhibit notable deficiencies in handling
nonstationary noise, which can lead to model instability or col-
lapse, particularly in areas with strong noise or complex data
distributions. While prior studies have somewhat mitigated this
issue by incorporating multisource data (e.g., digital elevation
models and vegetation indices), existing methods still struggle
to meet practical needs when using only GNSS-R data. The
inherent noise characteristics and observational uncertainties
of GNSS-R data complicate the modeling process [34], [49],
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further limiting the model’s generalization ability and stability.
Fortunately, recent advances in denoising diffusion models
show considerable promise in handling noisy data [50], [51],
[52]. These models offer distinct advantages by simulat-
ing forward diffusion (adding noise) and reverse denoising
(systematically removing noise), thereby capturing complex
data distributions and mitigating noise effects. Consequently,
we propose exploring the applicability of conditional diffusion
models for SWF estimation using GNSS-R data.

Specifically, the diffusion-based model framework first
introduces noise into the data through a forward diffusion
process to simulate a noisy data distribution; subsequently,
it removes the noise via a reverse diffusion process, ultimately
generating high-precision SWF estimation results. To over-
come the estimation challenges inherent in relying solely on
GNSS-R data, we develop an SWF estimation framework
named DiffWater in this study. The DiffWater framework
decomposes the SWF estimation task into a series of forward
and reverse diffusion steps. This method effectively learns
a reasonable estimation process for surface water distribu-
tion, rather than directly modeling the complex and noisy
GNSS-R data. With this decomposition strategy, DiffWater
excels at balancing noise removal and data structure preserva-
tion. Simultaneously, we re-examine the training optimization
objectives, offering an efficient and robust solution for the
SWF estimation task that relies exclusively on GNSS-R data.
Our main contribution is the proposal of a novel conditional
diffusion model composed of conditional block and time noisy
block, and details are given as follows.

1) To address the singularity problem commonly encoun-
tered by traditional conditional diffusion models in
regression estimation tasks, we propose an improved
framework called DiffWater. By reweighting the loss
function, we effectively mitigate the singularity bias
inherent in traditional noise prediction models, thereby
enabling the conditional diffusion model to estimate
SWF more accurately.

2) We designed a lightweight denoising model based on a
dual-branch U-Net structure. This model extracts condi-
tional features at multiple scales through the condition
module and redesigns a lightweight time noisy mod-
ule to jointly process noise and condition information
across multiple levels. Finally, we explicitly fuse mul-
tiscale features, multiscale conditional embeddings, and
implicit time embeddings of noisy images, significantly
enhancing the model’s inference efficiency and estima-
tion accuracy.

II. DATASETS

A. Calculation of CyGNSS Observables

This study utilized the CyGNSS Level 1 (L1)
Version 3.2 dataset, which is accessible on NASA
Earthdata (accessible at https://cmr.earthdata.nasa.gov/
virtual-directory/collections/C2832195379-POCLOUD/). The
CyGNSS satellite constellation receives GPS L1 band signals
reflected from the Earth’s surface, generating a composite
signal that comprises both coherent and incoherent scattering

components, which are influenced by the surrounding surface
roughness. Research by Ghasemigoudarzi et al. [53] indicates
that water reflections are primarily coherent, particularly in
areas with dense biomass surrounding the surface water.
By assuming that coherent reflections dominate over land, it is
possible to derive the surface reflectivity (0) from CyGNSS
data as

0 =
σ(Rt + Rr )

2

4π(Rt Rr )2 (1)

where σ is the bistatic radar cross section, and Rt and Rr

are the distances from SP to the transmitter and the receiver,
respectively, which are accessible in the abovementioned
CyGNSS L1 dataset. For each CyGNSS σ observation (an
11 × 17 pixel image), we utilize the peak value from the
image as the representative BRCS value for our analysis.

In addition to 0, an indicator of CyGNSS DDM’s
spread [pixel number (PN)] that depicts surface roughness is
employed as well [43], [54]. Yan and Huang [55] define the
PN as the total number of pixels that are above a specified
threshold (DDMthres) within a normalized DDM. Here, the
value of DDMthres is set to 0.2.

The data quality control scheme is based on the methodol-
ogy articulated in [33]. Data marked with the quality indicator
“SP in the sidelobe” are omitted due to their low confidence
in antenna gain. Based on the geographic locations of the
SPs, the CyGNSS data are aggregated into monthly scales
with a spatial resolution of 0.025◦

× 0.025◦, encompassing
the region between 37.5◦S and 37.5◦N.

B. Reference Data

GSW [11] and GLAD [12] both generated from Landsat
optical imagery are among the most comprehensive sources
of surface water data, spanning extended periods (GSW
from 1984 to 2021 and GLAD from 1999 to 2021), with
the spatial and temporal resolutions of 30 m and one month,
respectively. The analysis focuses on data from August 2018 to
December 2021 (a total of 41 months). Given the lack of
consensus on the superior dataset, this study utilized both
GSW and GLAD as references to derive surface water fraction
and merged them into a unified reference dataset, the GSW
fraction (GSWF). It is important to note that GSW contains
only classification (water body/land) information, and the SWF
for each 0.025◦ grid was calculated as the percentage of
water pixels within the grid. GLAD provides SWF directly,
and the average for each grid was computed. However, they
may face challenges such as insufficient coverage due to
cloud contamination or dense canopy. To secure the quality
of GSWF, a 0.025◦ grid is regarded as valid only if it
contains enough (over 90%) GLAD/GSW data. Otherwise,
it is classified as an occluded area, and a gridded cloud cover
mask is created. Consequently, the cloud-occluded portions of
the gridded CyGNSS data are masked to prevent the model
from accurately learning the mapping relationship between
CyGNSS data and surface water.
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Fig. 1. Dataset processing flowchart consisting of CyGNSS data creating,
reference data merging, and training/test splitting.

C. Data Collocation

The flowchart describing data preparation is presented in
Fig. 1. This study aims to provide SWF inversion with a
spatial resolution of 0.025◦ and a temporal step size of one
month. Accordingly, GNSS-R observation data and SWF ref-
erence data were matched based on these specifications. Both
GNSS-R data and SWF reference data were spatially averaged
to grid cells of 0.025◦, followed by uniform up/down sampling,
normalization, and stitching. Finally, a cropping algorithm
was employed to extract multiple image blocks of 256 × 256
pixels (6.4◦

× 6.4◦). The dataset spans from August 2018 to
December 2021, comprising 41 months of data, with the first
24 months used for training and the remaining 17 months
reserved for testing.

III. METHOD

A. Overall Diffusion Framework

The training procedure comprises two phases: a forward
diffusion phase and a backward denoising phase. The training
and sampling procedure of the overall framework is illustrated
in Fig. 2. During the training phase, the model progressively
adds noise at each time step t and optimizes by minimizing
the backward loss, enabling the model to learn the denoising
function for each time step based on conditional information.
This step-by-step learning approach ensures that the model
accurately captures the underlying data structure while gradu-
ally reducing noise. In the sampling phase, the trained model
generates clean samples through the reverse diffusion process.
Starting with a noise prior (generate noisy images at a known
time t), the model incrementally removes noise at each time
step t and guides the generation process using conditional
information (GNSS-R data). This iterative optimization allows
the model to reconstruct high-fidelity samples consistent with
the target distribution.

1) Forward Diffusion Process: We denote the reference
SWF image as x and model the forward process of the dif-
fusion model through a Markov chain. Specifically, the initial
state x0 is devoid of noise, while xT represents pure noise. The
state xt at time step t is expressed as xt =

√
αt xt−1 +

√
βtϵt−1,

where ϵt−1 ∼ N (0, I) represents the Gaussian noise and t is
a scalar randomly sampled during the model training process.
The parameter αt denotes the weighting coefficients of the

signal and noise components in xt , satisfying αt + βt = 1.
Specifically, a cosine time schedule is employed to compute
the noise content at each noise level t . The cumulative signal-
to-noise ratio is defined as ᾱt =

∏t
s=0 αs , which can be

derived to αt = (ᾱt/ᾱt−1). The noise schedule is constructed
as ᾱt = ( f (t)/ f (0)), where f (t) = cos2(((t/T + s)/(1 + s))·
(π/2)), with s initialized to 8 × 10−3. To ensure numerical
stability and prevent singularities near t = T at the conclusion
of the diffusion process, αt ≥ 0.001. Here, T denotes a
hyperparameter that specifies the total number of noise levels.
Therefore, the forward noise addition process is expressed
as q(xt |xt−1) = N (xt ;

√
αt xt−1, (1 − αt )I). Based on the

reparameterization technique and the principles of Markov
chain and normal distribution, the following formula can be
derived:

xt =
√

αt xt−1 +

√
1 − αtϵt−1

=
√

αt

(
√

αt−1xt−2 +
√

1 − αt−1ϵt−2

)
+

√
1 − αtϵt−1

=
√

αtαt−1xt−2 +
√

1 − αt−1αt−2ϵ̄t−2

= · · ·

=

√
ᾱt x0 +

√
1 − ᾱt ϵ̄ (2)

where ϵt , ϵt−1 ∼ N (0, I ) and ϵ̄t−2 is their merged
result. According to the additivity of the independent
Gaussian distribution, i.e., N (0, σ 2

1 I ) + N (0, σ 2
2 I ) ∼

N (0, (σ 2
1 + σ 2

2 )I ), therefore, any noised image xt

satisfies

q(xt |x0) = N (xt ;

√
ᾱt x0, (1 − ᾱt )I ) (3)

when t → T , xt can converge to the standard normal
distribution N (0, I ), consistent with the original design inten-
tion. For remote sensing tasks, effective noise scheduling
can make the diffusion process more natural and efficient
while accelerating model convergence and enhancing per-
formance. Fig. 3 illustrates the visual effects of various
noise scheduling strategies throughout the diffusion pro-
cess. In Section IV-B, we examine and discuss the impact
of various noise scheduling strategies on SWF estimation
performance.

2) Backward Diffusion Process: This process aims to obtain
the reversed transition probability q(xt−1|xt ), thereby gradu-
ally restoring the image x̂0 from the noise. Based on Bayes’
theorem, the posterior distribution of the forward diffusion pro-
cess, q(xt−1|xt , x0), is expressed in terms of β̃ t and µ̃t (xt , x0),
defined as follows:

β̃ t =
1 − ᾱt−1

1 − ᾱt
βt (4)

µ̃t (xt , x0) =

√
ᾱt−1βt

1 − ᾱt
x0 +

√
αt
(
1 − ᾱt−1

)
1 − ᾱt

xt (5)

q(xt−1|xt , x0) =
q(xt |xt−1, x0)q(xt−1|x0)

q(xt |x0)

∝ N
(
xt−1; µ̃t (xt , x0), β̃ t I

)
. (6)

Since q(xt−1|xt , x0) is challenging to compute explic-
itly, we approximate it using a neural network, denoted as
pθ (xt−1|xt ), where θ represents the learnable parameters of
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Fig. 2. Training and sampling procedure of DDPM.

Fig. 3. Visualization of the noise adding process T = 2000 is defined, and the noise adding methods include linear, quad, and cosine.

the denoising model (Algorithm 1). The optimization objec-
tive is to minimize the discrepancy between pθ (xt−1|xt ) and
q(xt−1|xt ). To achieve this, we derive q(xt−1|xt , x0) and set
the variance of pθ (xt−1|xt ) equal to that of q(xt−1|xt ) at the
same time step t .

Through the posterior probability distribution q(xt−1 | xt ,

x0) of the forward process, we define the probabil-
ity distribution of the reverse process as pθ (xt−1|xt ) =

N (xt−1; µθ (xt , t, c), 6θ (xt , t)), where µθ (xt , t, c) is a func-
tion of xt , t , and the conditioning variable c. This def-
inition is based on the assumption that for equivalent
states in the forward and reverse processes, the variance
of the reverse process is consistent with that of the for-
ward process. Define µθ (xt , t, c) as a function of xt , t ,
and the signal condition c. Similarly, express µθ (xt , t, c)
in terms of µ̃t (xt ) using µθ (xt , t, c) = (1/

√
αt )(xt −

((1 − αt )/(1 − ᾱt )
1/2)ϵθ (xt , t, c)). The optimization objective

function is then formulated using the Kullback–Leibler (KL)
divergence as

L(θ) = DKL(q(x0, x1, . . . , xT ) ∥ pθ (x0, x1, . . . , xT ))

= −Eq(x0,x1,...,xT )[− log pθ (x0, x1, . . . , xT )] + τ

= −Eq(x0,x1,...,xT )

[
− log p(xT ) −

T∑
t=1

log
pθ (xt−1|xt )

q(xt |xt−1)

]
+ τ (7)

where τ denotes a constant independent of θ . To achieve
the optimization goal, it suffices to minimize the following
objective function:

arg min
θ

DKL(q(xt |xt−1) ∥ pθ (xt−1|xt ))

= arg min
θ

1
2σ 2

q (t)

∥∥µ̃t (xt , t) − µθ (xt , t, c)
∥∥2

2

= arg min
θ

1
2σ 2

q (t)
·

(1 − αt )
2

αt
(
1 − ᾱt

)∥ϵ − ϵθ (xt , t, c)∥2
2 (8)

where ϵ ∼ N (0, I). Existing unconditional and conditional
diffusion models typically adopt a noise prediction approach,
wherein a neural network is trained to estimate the Gaussian
noise added at each step of the forward diffusion process.
The loss function can be defined as Lsimple(θ) = Ex0,c,ϵ,t [∥ϵ −
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ϵθ (
√

ᾱt x0 +

√
1 − ᾱtϵ, c, t)∥2

] and is used to optimize the
model parameters θ for image generation tasks. For the remote
sensing SWF estimation task, the conditional input information
is highly correlated with the target SWF. As a result, adopting
the noise prediction approach increases the complexity of
training and may even lead to model instability or failure.
Although ϵ and x0 are mutually dependent and can be derived
from xt =

√
ᾱt x0 +

√
1 − ᾱtϵ, altering the regression target

affects the scale of the loss function, subsequently influ-
encing the training dynamics. Given the similarity in data
distribution between the conditional GNSS-R inputs and SWF
images, data prediction proves to be significantly simpler
than noise prediction. This simplification enhances model
convergence and improves the accuracy of SWF estimation.
Therefore, we redefine the model as a data prediction model,
denoted as x̂θ , to replace the traditional noise prediction
model ϵθ

Lsimple(θ) = Ex0,c,ϵ,t

[∥∥∥∥ϵ − ϵθ

(√
ᾱt x0 +

√
1 − ᾱtϵ, t, c

)∥∥∥∥2

2

]

= Ex0,c,ϵ,t

[∥∥∥∥∥ 1√
1 − ᾱt

(
xt −

√
ᾱt x0

)

−
1√

1 − ᾱt

(
xt −

√
ᾱt x̂θ (xt , t, c)

)∥∥∥∥∥
2

2


= Ex0,c,ϵ,t

[
ᾱt

1 − ᾱt

∥∥x0 − x̂θ (xt , t, c)
∥∥2

2

]
. (9)

Here, we define SNR = (ᾱt/(1 − ᾱt )) as the signal-to-noise
ratio. From the perspective of the Fourier domain, the model
initially removes the high-frequency components (texture fea-
tures) of the target SWF during the noise addition process
(forward process), followed by the removal of low-frequency
components (overall image features). Consequently, during the
inference phase, the model first reconstructs the low-frequency
components (overall image features) of the SWF and sub-
sequently generates the high-frequency components (texture
features). Considering the aforementioned noise-weighted loss
function, it becomes apparent that the model exhibits a sin-
gularity at t = T . As t → T −, we have lim

t→T −

SNR(t) =

lim
t→T −

(ᾱt/(1 − ᾱt )) = 0. The model’s denoising ability is
constrained at the initial moment t = T , and average bright-
ness issues may arise at different sampling stages, which
can be detrimental to the SWF estimate task. At t = 0,
the model distribution degenerates into a singular distribu-
tion, specifically a Gaussian distribution with zero variance,
lim

t→0+

SNR(t) = lim
t→0+

(ᾱt/(1 − ᾱt )) = +∞. This step is
straightforward for the model to learn, and increasing in
weight is unnecessary. The singularity at t = 0 represents
an inherent characteristic of the diffusion model. Provided that
appropriate sampling techniques are employed, this singularity
does not need to be circumvented [56], [57]. Consequently,
it is necessary to reduce the weight as t → 0+ and
increase the weight as t → T −. Following this principle,
we adopt a reweighted loss function to ensure that the model

learns noise removal with equal emphasis across all time
steps t .

By removing the coefficient (ᾱt/(1 − ᾱt )), the loss function
of the reweighted diffusion model can be reformulated as

Lsimple(θ) =
∥∥x0 − x̂θ (xt , t, c)

∥∥2
2. (10)

3) Sampling Process: In the inference process, which is
also known as the sampling process (Algorithm 2). The new
image x0 can be generated from either Gaussian noise or a
noisy image xt by iteratively sampling xt−1 until t = 1

xt−1 =
1

√
αt

(
xt −

1 − αt√
1 − ᾱt

ϵθ (xt , t, c)

)
+

√
1 − αt z (11)

where z ∼ N (0, I), and it is assumed that z = 0
when t = 1. According to the forward noise addition
formula xt =

√
ᾱt x̂θ + (1 − ᾱt )

1/2ϵθ , we can get ϵθ =

((xt −

√
ᾱt x̂θ )/(

√
1 − ᾱt )). We use the original prediction

model to replace the noise prediction model, and the corrected
expression is

xt−1 =
1

√
αt

(
xt −

1 − αt√
1 − ᾱt

·
xt −

√
ᾱt x̂θ (xt , t, c)√
1 − ᾱt

)
+

√
1 − αt z. (12)

B. Conditional Denoising Model

The standard U-Net model has made significant progress
in large-scale surface water extraction tasks. However, when
applied to diffusion models, the conventional U-Net architec-
ture often suffers from an excessive number of parameters
and computational overhead caused by redundant floating-
point operations. These inefficiencies can impede both the
training and inference processes. To address this, we introduce
an efficient conditional denoising model, DiffWater, which
integrates a simplified conditional module and a time-noise
block (TNB) module as core components, as illustrated in
Fig. 4. The model employs a decoupled feature extraction
mechanism that decomposes the original feature space into
multiple independent factors. These factors represent distinct
attributes of the data, enhancing the model’s generalization
ability and interpretability. The DiffWater architecture consists
of two main components.

1) Dual-Branch Conditional and Temporal Noise Encoder:
This module extracts the spatial distribution of SWF
from the conditional input and captures the temporal
features corresponding to the noise level t .

2) Temporal Denoising Decoder: The spatial and temporal
features are concatenated and passed to the decoder,
which performs step-by-step, noise-free SWF recon-
struction.

Supervised by the restoration mean squared error (mse)
loss, the model generates high-precision SWF estimation
results. By reducing unnecessary computations and enhanc-
ing efficiency, DiffWater accelerates both the training and
inference processes while ensuring reliable performance for
surface water extraction tasks. This design ensures the model’s
efficiency while preserving performance, offering a robust
solution for accurate SWF extraction from noisy data.
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Fig. 4. Overall architecture of the DiffWater conditional denoising model. The model consists of three parts: 1) a conditional encoder; 2) a temporal noise
encoder; and 3) a denoising decoder. The conditional encoder extracts the spatial features of GNSS-R conditional information, while the temporal noise
encoder extracts temporal features corresponding to the noise level t and spatial features of the noisy image. These features are subsequently input into the
denoising decoder, which estimates the data distribution of SWF under the supervision of the recovery loss.

1) Time Noisy Block: The training of diffusion models
typically involves multiple iterative steps, necessitating signif-
icant computational resources. Consequently, we prioritized
simplicity and efficiency in our design. Building upon the
U-Net architecture, we employed depthwise separable convo-
lution to replace the conventional 3 × 3 convolution module
and selected the sigmoid linear unit (Silu) as the activation
function. To incorporate temporal information t , we utilized
sinusoidal encoding and implemented a multilayer perceptron
(MLP) to facilitate the integration of this time information
into the intermediate layers of the module. The complete TNB
comprises two sets of repeated convolution modules, and its
forward process is outlined as

Fm = W c
1×1

(
σ
(
W d

3×3

(
W c

1×1(Norm(Fin))
)))

(13)

F f
m = Fin + Fm + Pos(MLP(t)) (14)

Fout = W c
1×1

(
σ
(
W d

3×3

(
W c

1×1

(
F f

m

))))
+ F f

m (15)

where W c
1×1 denotes a 1 × 1 pointwise convolution, W d

3×3
indicates a 3 × 3 depthwise convolution (DwConv), Norm
refers to the layer normalization, and σ represents the acti-
vation function, specifically the Silu. Furthermore, Fin ∈

RH×W×C represents the input features, Fout ∈ RH×W×C

denotes the output features, and Fm and F f
m are intermediate

variables.
2) Conditional Block: We have developed a conditional

module based on the TNB. This module is designed to
accurately capture conditional information by considering both

spatial and channel features. To enhance the model’s ability
to extract conditional information, we implemented efficient
spatial attention (SA) and channel attention mechanisms. For
SA, we utilize a 1 × 1 convolution to reproject channel
information, followed by a 3 × 3 DwConv to aggregate
information from adjacent pixels. This approach enables the
model to effectively capture local features while preserving
the details of the spatial structure, thereby improving its
understanding of local context. Additionally, we incorporated
a gating mechanism to further enhance the encoding capability
of spatial information. This allows the model to extract and
utilize spatial information more comprehensively, leading to
improved overall performance. The forward process of SA can
be expressed as follows:

Fsa = W c
1×1

(
σ
(
W d

3×3

(
W c

1×1(Norm(Fin))
)))

⊙ W d
3×3

(
W c

1×1(Norm(Fin))
)

+ Fin. (16)

Then, we introduce a lightweight channel attention mech-
anism to enhance the robustness of conditional information
extraction. This mechanism comprises two branches: a global
channel attention branch and a local channel attention branch.
Initially, the input features are partitioned into two segments
along the channel dimension. Each segment undergoes global
average pooling (GAP) and global maximum pooling (GMP).
Following this, a 1 × 1 convolution is applied to establish
explicit correlations between channels within each segment.
Ultimately, the features derived from both branches are
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concatenated along the channel dimension, resulting in robust
features that integrate both global and local information. The
average pooling emphasizes the mean representation of the
extracted features, thereby preserving essential overall charac-
teristics of the image, while the maximum pooling focuses on
capturing detailed texture features. The significance of varying
channels can be emphasized through GAP and GMP

Fmax, Favg = Split(Fsa) (17)

Fca = W c
1×1

(
8
(
W c

1×1(GMP(Fmax)), W c
1×1

×
(
GAP(Favg)

)))
(18)

where Fmax ∈ RH×W×(C/2) and Favg ∈ RH×W×(C/2) represent
the results obtained from splitting the input features by channel
using the Split operation, the operator 8 denotes the concate-
nation of features along the channel dimension, GAP refers
to the global average pooling, and GMP denotes the global
maximum pooling.

Subsequently, a series of lightweight convolution modules
are employed to recalibrate the spatial and channel features of
the conditional image. Each module consists of a normaliza-
tion layer, two point-wise convolution layers, a DwConv, and
an activation layer, as detailed in the following:

Fout = W c
1×1

(
σ
(
W d

3×3

(
W c

1×1(Norm(Fca))
)))

+ Fca. (19)

3) Overview: The overall model is structured as a two-
branch U-Net. Unlike previous studies, this model integrates
conditional, noise, and temporal information while introducing
new branches for the independent extraction of conditional
information, thereby improving its capability to effectively
eliminate noise. To maintain a lightweight design, our down-
sampling module utilizes convolutions with a kernel size of
2 × 2 and a stride of 2, while the upsampling module employs
convolutions with a kernel size of 1 × 1 in combination
with PixelShuffle to minimize information loss. In alignment
with the U-Net architecture, we incorporate skip connections;
however, we replace the conventional channel concatenation
approach with element-wise addition. This direct addition of
skip connections introduces no additional parameters, whereas
channel concatenation requires the learning of extra parameters
to adjust feature channel dimensions. By directly adding
low-level features to high-level features, we achieve more
efficient fusion, as opposed to channel concatenation, which
demands more complex transformations for feature integra-
tion. Additionally, prior research on GNSS-R has highlighted
the advantages of direct fusion, further supporting our design
choice.

IV. EXPERIMENTS

A. Experimental Platform Parameter Settings

All experiments were conducted on a workstation equipped
with an AMD Ryzen 7 7800X3D 8-core processor, 64 GB of
memory, and an NVIDIA GeForce RTX 4090 D GPU (24 GB
of memory). The operating system used was Ubuntu 22.04,
and all networks were implemented in PyTorch 2.4.0 with
CUDA 11.8. The Adam optimizer was selected as the initial
optimizer, with an initial learning rate set to 5e−4. During the
training phase, the batch size was set to 8, and the training

Algorithm 1 Training DiffWater
Input: Conditional GNSS-R data c, noisy water image xt ,

noise level t
Output: x̂0 estimated by conditional denoising model x̂θ

1: repeat
2: (c, x0) ∼ q(c, x)

3: t ∼ Uniform({1, . . . , T })

4: ϵ ∼ N (0, I)
5: Take a gradient descent step on

∇θ

∥∥∥x0 − x̂θ (
√

ᾱt x0 +

√
1 − ᾱtϵ, t, c)

∥∥∥2

2
6: until converged

Algorithm 2 Inference With Iterative Refinement
Input: Conditional GNSS-R data c, Gaussian noise xT , noise

level t
Output: x0 estimated by pre-trained conditional denoising

model
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0
4: xt−1 =

1
√

αt

(
xt −

1−αt√
1−ᾱt

·
xt −

√
ᾱt x̂θ (xt ,c,t)√

1−ᾱt

)
+

√
1 − αt z

5: end for
6: return x0

process involved approximately 2 million steps. Additionally,
we initialized the model weights using the Kaiming nor-
mal distribution and applied the exponential moving average
(EMA) during the training process, starting from the first
iteration and updating with a decay rate of 0.999 after each
iteration, which helps stabilize the training process and prevent
overfitting. During the diffusion process, we set the maximum
noise step to 2000. To quantitatively analyze and compare the
effectiveness of the proposed method with other methods, five
evaluation metrics were used: mean absolute error (MAE),
root-mean-squared error (RMSE), structural similarity index
(SSIM), peak signal-to-noise ratio (PSNR), and the correla-
tion coefficient (R). Lower values of MAE and RMSE are
preferred, while higher values of SSIM, PSNR, and R are
desired.

B. Different Noise Adding Methods

Table I presents the impact of various noise schedules on the
diffusion process. It can be observed that the cosine schedule
yields the best SWF estimation performance, while the linear
schedule exhibits the poorest performance. Simultaneously,
Fig. 5 illustrates the variation in ᾱt during the noise addition
process. For data prediction, the noise level near t = T must
be considered. During the data prediction process, the loss
function is reweighted. It is crucial that the prediction at each
step is considered important for the model. In comparison to
the cosine schedule, the linear and quadratic ᾱt values decay
to zero much more rapidly, resulting in faster information
degradation than necessary, which is undesirable. The cosine
schedule is designed to have a linear decrease in ᾱt in the
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Fig. 5. Variation of ᾱt across different noise addition methods: ᾱt represents
the proportion of the original image. A smoother curve in the changes of ᾱt
indicates a more balanced noise addition process over time.

TABLE I
QUANTITATIVE COMPARISON OF SWF ESTIMATION PERFORMANCE
ACROSS VARIOUS NOISE SCHEDULES IN THE DIFFUSION PROCESS:
MAXIMUM NOISE STEP SET TO 2000 FOR ALL SCHEDULES, WITH

LINEAR AND QUADRATIC APPROACHES UTILIZING THE
SAME DENOISING MODEL AS COSINE

TABLE II
QUANTITATIVE COMPARISON OF DIFFWATER’S NOISE PREDICTION

AND DATA PREDICTION IN SWF REGRESSION PERFORMANCE:
NOISE PREDICTION UTILIZES NOISE AS THE TRAINING TARGET

FOR THE DENOISING MODEL, WHILE DATA PREDICTION
EMPLOYS NOISE-FREE REFERENCE IMAGES. ALTHOUGH

BOTH APPROACHES CAN BE EQUIVALENTLY
TRANSFORMED, DATA PREDICTION EXCLUDES

SNR CONSIDERATIONS COMPARED TO THE
NOISE PREDICTION OBJECTIVE FUNCTION

middle of the process, with minimal change near the extreme
values of t = 0 and t = T to prevent sudden fluctuations in
the noise level. The experimental results demonstrate that the
cosine schedule is the optimal solution.

C. Different Prediction Methods

Table II presents a quantitative comparison of the SWF
regression performance for noise prediction and data pre-
diction during model training. We experimentally assess the
impact of the proposed data prediction and noise prediction on
SWF regression performance. As anticipated from the training
objective (described in Section III-A2), the reweighted data
prediction outperforms noise prediction. This is because data
prediction alleviates the singularity problem, ensuring that
the model is as accurate as possible at each step of SWF
estimation. Furthermore, it is easier to predict an outcome that
closely resembles the input, whereas noise prediction is less
accurate near the singular point, often leading to inaccurate
SWF estimation.

TABLE III
QUANTITATIVE COMPARISON OF VARIOUS CONDITIONAL INFORMATION

PROCESSING METHODS: ALL THREE APPROACHES USE COSINE
SCHEDULE AS THE BENCHMARK FOR DATA PREDICTION

D. Conditional GNSS-R Data Processing

We quantitatively explored the relationship between noise
and conditional information. Conventional diffusion models
concatenate noise and conditional information and directly use
temporal noise modules for condition-guided noise removal.
However, this approach can not ensure that noise does not dis-
rupt the conditional information. To address this, we examined
three approaches for handling the interaction between noise
and conditional information.

1) Concat: Conditional information is directly concatenated
with noise and processed using a single module.

2) Decouple: Noise and conditional information are decou-
pled and processed separately using independent mod-
ules.

3) Concat and Decouple: Noise and conditional infor-
mation are concatenated while also decoupling the
conditional information for separate processing, combin-
ing the strengths of the first two methods.

The experimental results are presented in Table III. The
decoupling method demonstrates a positive impact on model
performance. Additionally, incorporating independent decou-
pling modules into the standard method further enhances the
model performance. Compared to the Concat method, the
Decouple method achieves a 1.069% reduction in RMSE.
The Concat and Decouple methods achieve the best per-
formance, reducing RMSE by 1.435% and significantly
outperforming other methods.

E. Ablation Experiments

Table IV summarizes the results of ablation experiments
conducted on various modules, where CA refers to the inclu-
sion of the channel attention module in the condition module,
SA represents the use of the SA module, and DwConv signifies
the incorporation of a lightweight module. The results demon-
strate that using the CA module enhances the accuracy of SWF
estimation, as evidenced by a reduction in MAE from 3.562%
to 3.318%, with only a marginal increase in the number
of parameters (from 46.884 to 47.408 M) and floating-point
operations (from 69.408 to 70.486 G). This improvement can
be attributed to the CA module’s ability to strengthen the
robustness of the model in extracting conditional information.
The SA module significantly improves the overall quality of
SWF estimation, as indicated by an increase in SSIM from
0.9783 to 0.9804. This is due to the SA module’s capacity
in enhancing the model’s understanding of local context. The
combination of both modules yields a significant improvement
in estimation accuracy, as reflected by a reduction in MAE to
3.289% and an increase in SSIM to 0.9809 while also enhanc-
ing overall image quality. The introduction of the lightweight
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TABLE IV
QUANTITATIVE COMPARISON OF ABLATION EXPERIMENTS ACROSS DIFFERENT MODULES: CA REFERS TO CHANNEL ATTENTION,

SA REFERS TO SPATIAL ATTENTION, AND DWCONV INDICATES THE USE OF DEPTHWISE SEPARABLE
CONVOLUTION IN PLACE OF STANDARD 3 × 3 CONVOLUTION

TABLE V
QUANTITATIVE COMPARISON OF DIFFERENT METHODS FOR SWF ESTIMATION: AVERAGE OVERALL METRICS ACROSS ALL REGIONS. TRAINING

PERIOD FOR ALL REGIONS: AUGUST 2018–JULY 2020. TESTING PERIOD FOR ALL REGIONS: AUGUST 2020–DECEMBER 2021

DwConv not only accelerates model convergence compared
to traditional convolutions but also reduces the model’s sen-
sitivity to noisy data, thereby enhancing the robustness of
the method. DwConv further enhances the model’s overall
denoising capability, enabling more accurate predictions even
under high-noise conditions. The combination of CA, SA, and
DwConv results in a substantial improvement in the model’s
ability to accurately estimate SWF, as evidenced by a reduction
in MAE to 2.852% and an increase in SSIM to 0.9839 while
simultaneously improving parameter efficiency (reducing the
number of parameters to 18.550 M) and lowering computa-
tional complexity (reducing giga floating-point operations per
second (GFLOPS) to 23.205 G).

F. Comparative Experiment

Fig. 6 presents the historical river system maps of two
regions: the Congo Basin (a) and the Amazon Basin (b), along-
side the interannual variations in these areas. It is important
to note that cloud cover issues may lead to missing reference
data in certain regions, as the reference data are derived
from optical images. Despite these limitations, the seasonal
changes in the river systems at these locations remain evident,
with noticeable differences in river system distributions across
various periods. Therefore, the design of SWF estimation
models must focus on capturing monthly variations rather than
learning a fixed, uniform pattern. Failure to account for signal
changes during the inference stage may hinder the accurate
representation of SWF distribution and lead to imprecise SWF
estimations.

To comprehensively evaluate the performance of
the model, we conducted a comparative analysis of
DiffWater against widely adopted deep learning models,
including semantic segmentation-based architectures such as
U-Net [58], LinkNet [59], PspNet [60], and Deeplabv3+ [61].

Additionally, we compared DiffWater with the
Transformer-based CFRT model [48], which is specifically
designed for SWF estimation, as well as with classic
GAN-based models such as Pix2Pix [62] and its variant
TransGAN [63], and the noise prediction-based denoising
diffusion probabilistic model (DDPM) [50]. The parameter
configurations of these compared methods are detailed as
follows and the global SWF retrieval results are summarized
in Table V.

1) U-Net: It employs a symmetric encoder–decoder archi-
tecture with skip connections for efficient feature
extraction and reconstruction. ResNet34 serves as the
backbone and a Sigmoid activation function is applied
for SWF estimation.

2) LinkNet: LinkNet integrates an encoder–decoder struc-
ture with residual connections to enhance feature
extraction and segmentation accuracy, demonstrating
robustness in surface water detection. ResNet34 is used
as the backbone and a sigmoid activation function
applied for SWF estimation.

3) PspNet: PspNet incorporates a pyramid pooling module
to capture multiscale contextual information, improving
image comprehension and segmentation accuracy. The
first two layers of ResNet34 serve as the encoder, while
the original decoder is retained. A Sigmoid activation
function is applied for SWF estimation.

4) Deeplabv3+: This network combines dilated convolu-
tions with a decoder structure to enhance multiscale
feature extraction and detail preservation, making it
suitable for complex scene parsing. ResNet34 is used as
the encoder, and a sigmoid activation function is applied
for SWF estimation.

5) CRFT: It is specifically designed for SWF regression
using CyGNSS data, excluding multisource constraints.
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Fig. 6. Interannual variation of SWF in (a) Congo Basin and (b) Amazon Basin: seasonal reference data for January, April, July, and October, with cloud
cover-induced data gaps filled with zero.

A sigmoid activation function is applied at the output
for value range scaling.

6) Pix2Pix: It is a conditional generative adversarial net-
work (cGAN) for image-to-image translation, generating
target images from the inputs. U-Net serves as the
generator, with a discriminator composed of four stacked
convolutional layers.

7) TransGAN: It is a Transformer-based GAN that incor-
porates SSIM as a generator constraint, enhancing detail
and accuracy in complex terrains. It is applied to SWF
estimation while retaining the SSIM loss.

8) DDPMBase: DDPM is a denoising-based generative
model that simulates reverse diffusion to produce
high-quality samples. The original U-Net serves as
the denoising model, with conditional information

concatenated to the noisy image. A linear noise schedule
is employed for noise prediction.

The results indicate that semantic segmentation methods
struggle to accurately estimate SWF quantities, as reflected
by their high RMSE values and lower SSIM and PSNR
metrics. The CFRT model, designed specifically for SWF esti-
mation, integrates the Swin Transformer and U-Net, employs
an improved loss function, and achieves better results across
multiple metrics. GAN-based generative models perform well
in terms of SSIM and PSNR but exhibit significant limitations
in accurately estimating SWF (see its RMSE). Diffusion-based
models demonstrate strong performance in SSIM and PSNR,
producing high-quality SWF estimation images. However,
DDPMBase encounters challenges in accurately estimating
SWF due to singularity issues, resulting in cumulative errors
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Fig. 7. Visualization of experimental results in the Congo Basin region. (a) Study area. (b) Historical surface water. (c) GWSF (January). (d) GWSF
(July). (e) U-Net (January). (f) U-Net (July). (g) LinkNet (January). (h) LinkNet (July). (i) PspNet (January). (j) PspNet (July). (k) DeepLabV3+ (January).
(l) DeepLabV3+ (July). (m) CRFT (January). (n) CRFT (July). (o) Pix2Pix (January). (p) Pix2Pix (July). (q) TransGAN (January). (r) TransGAN (July).
(s) DDPM (January). (t) DDPM (July). (u) DiffWater (January). (v) DiffWater (July). Note: the numerical values below each method indicate the RMSE for
the corresponding region.

during the sampling process, particularly near the t → T −

time step, and producing inaccurate estimates. In contrast,
DiffWater resolves the singularity problem by applying
equal-weight training at each time step, effectively reducing
error accumulation during the sampling process and enabling
accurate SWF estimation near the t → T − time step.
As a result, DiffWater achieves superior performance, with
an RMSE of 4.987.

The SWF estimation results from various models in three
representative regions (the Congo Basin, the Amazon Basin,
and the middle and lower reaches of the Yangtze River) are
presented in Figs. 7–9, illustrating conditions across different
months. Additionally, the RMSE values of each method’s
results, along with the reference data for each region, are
displayed below the corresponding figure. Visual analysis
reveals that the seasonal variations of the water system are
highly significant. Methods based on semantic segmentation
exhibit notable errors in estimation. In certain areas, U-Net
fails to detect surface water, resulting in biased SWF esti-
mates. LinkNet tends to overestimate SWF and demonstrates
excessive sensitivity to surface water in certain areas. In con-
trast, PspNet and Deeplabv3+ lack texture detail features in
their surface water inversion results, leading to inaccuracies
in estimating areas where surface water is present. CRFT
considerably enhances performance in these aspects; however,
omissions still occur in some certain areas. Pix2Pix demon-
strates inaccuracies in SWF estimation. TransGAN exhibits
excessive sensitivity to surface water, leading to the erroneous

detection of surface water in areas where it is actually absent.
DDPM demonstrates a lack of precision in SWF estimation,
failing to detect the presence of surface water in certain areas.
DiffWater prioritizes the accuracy of SWF estimation while
also considering the presence of surface water. Although it
may underestimate SWF, its overall results are the closest to
the reference data.

G. Water Body Sensitivity Discussion

The sensitivity of surface water trajectory detection is cru-
cial for accurately estimating SWF. Therefore, regions where
surface water has previously occurred are assigned a value
of 1, while regions without surface water are assigned a value
of 0. The intersection over union (IoU) metric is employed to
evaluate the overall surface water extraction performance of
different models. Additionally, we accumulated the monthly
occurrences of surface water in 2021 based on SWF estimation
ratio intervals, generating a sensitivity statistics map of surface
water, with the value range spanning from 0 to 12. Finally,
by overlaying SWF estimations across different ratio inter-
vals and calculating the normalized RMSE, we evaluated the
sensitivity of various models to water bodies across multiple
seasons and ratio ranges. This process facilitates the analysis of
oversight phenomena in SWF estimation by different models
under varying ratio conditions. Table VI presents a comparison
of DiffWater with several representative models over the globe.
DiffWater demonstrates significant advantages, achieving the
best performance across multiple metrics. However, its overall
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Fig. 8. Visualization of experimental results in the Amazon Basin region. (a) Study area. (b) Historical surface water. (c) GWSF (April). (d) GWSF
(October). (e) U-Net (April). (f) U-Net (October). (g) LinkNet (April). (h) LinkNet (October). (i) PspNet (April). (j) PspNet (October). (k) DeepLabV3+

(April). (l) DeepLabV3+ (October). (m) CRFT (April). (n) CRFT (October). (o) Pix2Pix (April). (p) Pix2Pix (October). (q) TransGAN (April). (r) TransGAN
(October). (s) DDPM (April). (t) DDPM (October). (u) DiffWater (April). (v) DiffWater (October). Note: the numerical values below each method represent
the RMSE for the corresponding region.

TABLE VI
QUANTITATIVE COMPARISON OF SURFACE WATER SENSITIVITY USING DIFFERENT METHODS: FROM JANUARY TO DECEMBER 2021,

THE RMSE WAS CALCULATED BASED ON THE MONTHLY CUMULATIVE NORMALIZATION OF SENSITIVITY,
WHILE THE IOU WAS COMPUTED FOR AREAS WHERE SWF WAS PRESENT

sensitivity to surface water is slightly weaker than that of
TransGAN. Specifically, DiffWater exhibits weaker sensitivity
in detecting SWF in regions with a ratio of 10%–50% while
achieving significant advantages in the 1%–10% and 50%–
100% intervals. Fig. 10 illustrates the monthly cumulative
surface water maps for 2021 generated by DiffWater, along
with other models, using GSWF as reference data. The results
indicate that U-Net and LinkNet fail to detect surface water
in certain areas, while PspNet and Deeplabv3+ are unable
to capture surface water details. In contrast, CRFT, Pix2Pix,
and TransGAN demonstrate excessive sensitivity to surface
water, leading to overdetection. Diffusion-based models, such
as DDPM and DiffWater, exhibit strong detection capabilities
for subtle surface water features, enabling accurate detec-

tion of surface water at varying ratios. However, due to
differences in optimization objectives, DDPM, which focuses
on noise estimation, struggles with SWF estimation accu-
racy and fails to provide precise judgments regarding SWF
quantities. On the other hand, DiffWater not only achieves
optimal accuracy in identifying water system locations but
also provides accurate SWF estimations across multiple
periods.

H. Time Series Analysis

To comprehensively evaluate the performance of multiple
models, we conducted a detailed analysis of time series data
for six case study regions. By averaging the SWF values within
each region, we generated time series fitting graphs, as shown
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Fig. 9. Visualization of experimental results in the middle and lower reaches of the Yangtze River. (a) Study area. (b) Historical surface water. (c) GWSF
(April). (d) GWSF (October). (e) U-Net (April). (f) U-Net (October). (g) LinkNet (April). (h) LinkNet (October). (i) PspNet (April). (j) PspNet (October).
(k) DeepLabV3+ (April). (l) DeepLabV3+ (October). (m) CRFT (April). (n) CRFT (October). (o) Pix2Pix (April). (p) Pix2Pix (October). (q) TransGAN
(April). (r) TransGAN (October). (s) DDPM (April). (t) DDPM (October). (u) DiffWater (April). (v) DiffWater (October). Note: the numerical values below
each method represent the RMSE for the corresponding region.

Fig. 10. 1%–100% surface water occurrence statistics for various methods. (a) Study area. (b) Historical surface water. (c) GWSF. (d) U-Net. (e) LinkNet.
(f) PspNet. (g) DeepLabv3+. (h) CRFT. (i) Pix2Pix. (j) TransGAN. (k) DDPM. (l) DiffWater. Note: the numerical values below each method represent the
RMSE for the corresponding region.

in Fig. 11. Representative models, including CRFT, DDPM,
and DiffWater, were compared with the reference data GSWF.
The results demonstrate that DiffWater effectively captures
long-term time series features across all regions, exhibits
high sensitivity to GNSS-R signal variations, and accurately
estimates regional SWF content, closely aligning with optical
reference data. However, both DDPM and DiffWater exhibit
a consistent underestimation of regional SWF content, while
CRFT, with its improved loss function, tends to overestimate
SWF content. These discrepancies may be attributed to differ-
ences in optimization objectives. Future research could focus

on refining the design of loss functions, as the reliance on
a single mse loss function may pose a bottleneck for model
performance.

I. Applications and Challenges of Regional Cross Validation

Our prior investigation employed temporal cross validation
to assess interhemispheric generalization capacity and vali-
date geographical transferability. Building on this foundation,
we implemented a spatial cross-validation framework utilizing
Northern Hemisphere data (August 2018–December 2021)
for model training, followed by a systematic evaluation on
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Fig. 11. Temporal analysis of SWF across six geographic regions (August 2020–December 2021): a comparative performance evaluation of three representative
methods against reference data. Regions covered: (a) North America, (b) South America, (c) Africa, (d) Central Asia, (e) East Asia, and (f) Australia.

TABLE VII
QUANTITATIVE COMPARISON OF DIFFERENT SWF ESTIMATION METHODS: AVERAGE OVERALL METRIC FOR THE SOUTHERN HEMISPHERE.

MODEL TRAINING WAS CONDUCTED USING DATA FROM THE NORTHERN HEMISPHERE FROM AUGUST 2018 TO DECEMBER 2021,
WHILE TESTING WAS PERFORMED ON THE SOUTHERN HEMISPHERE REGION OVER THE SAME PERIOD

Southern Hemisphere observations within the same temporal
window. As listed in Table VII, the analysis reveals significant
performance degradation (1RMSE = 15.8%–21.3%) across all
architectures when applied to geographically distinct regions.
Notably, encoder–decoder architectures (U-Net: RMSE =

11.86% and R = 0.682; LinkNet: RMSE = 12.48% and R =

0.651) exhibited superior cross-domain robustness. Generative
approaches (Pix2Pix: 1R = 0.032; TransGAN: 1R = 0.041)
demonstrated enhanced generalization capacity compared to
discriminative architectures (CRFT: 1R = 0.112), consistent
with their inherent ability to model data distributions under
varying conditions. Despite employing robust U-Net founda-
tions, DDPMBase exhibited convergence instability (RMSE =

13.11%), potentially attributable to singularities in its diffu-
sion process. While DiffWater achieved optimal performance
(RMSE = 10.57% and R = 0.747), it retained a 12.3%

R-value reduction compared to the same-region temporal
validation benchmarks.

We speculate that the substantial decline in performance
across different models may stem from climate differences.
The seasonal rainfall patterns in tropical regions of the South-
ern Hemisphere (such as the Amazon Basin) differ markedly
from those in temperate regions of the Northern Hemisphere,
leading to considerable variations in precipitation across
different regions. Although the model can learn the correlation
between CyGNSS data and surface water, cross-scenario tasks
remain challenging. Regarding terrain complexity, the steep
gradients in southern Africa and Australia present challenges
for texture feature extraction. Complex terrain affects not only
the spatial distribution of surface water but also increases the
uncertainty of sensor data, further exacerbating the model’s
performance degradation. These findings indicate that further
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development of region-invariant representation learning tech-
niques is essential for global-scale surface water monitoring
applications.

V. CONCLUSION

In this study, we propose DiffWater, a conditional diffusion
model designed for monthly scale GNSS-R signal-based SWF
estimation. Existing regression methods based on semantic
segmentation and GANs struggle to accurately estimate SWF
in noisy environments. Diffusion models provide the potential
for more precise SWF estimation under such conditions.
However, traditional DDPMs encounter inaccuracies in SWF
estimation due to singularity issues, and diffusion-based mod-
els generally require thousands of iterations to achieve high
sampling quality. Consequently, balancing sampling speed
and addressing singularity problems remains a significant
challenge. DiffWater addresses these issues by improving the
loss function objectives, significantly enhancing the estima-
tion accuracy at singularity locations, and enabling precise
SWF estimation. Additionally, it accelerates model training
through the decoupling of conditional information and the
introduction of lightweight modules. Compared to other deep
learning methods, DiffWater achieves higher accuracy in SWF
estimation tasks.

The accuracy of SWF estimations generated by DiffWater
fundamentally depends on the quality and precision of the
optical reference data used. Although this study integrates
multiple sources of optical reference data and applies uni-
fied corrections to GNSS-R input data in regions lacking
reference data, resulting in significantly improved estima-
tion accuracy compared to previous studies, ensuring reliable
and accurate reference data remains a critical challenge.
Future work should investigate the incorporation of more
suitable reference sources and utilize additional ground-truth
data to further validate the model’s performance. Simulta-
neously, when the reference data are appropriate, we will
consider introducing a Transformer-based diffusion model
for short-term SWF retrieval from large-scale GNSS-R data.
In cloudy regions, incorporating downsampling methods in
GNSS-R-based SWF estimation warrants further exploration.
Furthermore, we observed that the performance of existing
deep learning models varies significantly across different
regions. The subsequent development of domain-invariant rep-
resentation learning techniques is essential for global-scale
surface water monitoring applications.
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