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Abstract: Soil moisture (SM) has normally been estimated based on a linear relationship between
SM and the surface reflectivity (Γ) from the spaceborne Global Navigation Satellite System (GNSS)-
Reflectometry, while it usually relies on inputs of SM data without considering vegetation optical
depth (VOD/τ) effects. In this study, a new scheme is proposed for retrieving soil moisture from the
Cyclone GNSS (CyGNSS) data. The variation of CyGNSS-derived ∆Γ is modeled as a function of both
variations in SM and VOD (∆SM and ∆τ). For retrieving SM, ancillary τ data can be obtained from
the Soil Moisture Active Passive (SMAP) mission. In addition to this option, a model for simulating
∆τ is suggested as an alternative. Experimental evaluation is performed for the time span from
August 2019 to July 2021. Excellent agreements between the final retrievals and referenced SMAP SM
products are achieved for both training (1-year period) and test (1-year duration) sets. On the whole,
overall correlation coefficients (r) of 0.97 and 0.95 and root-mean-square errors (RMSEs) of 0.024
and 0.028 cm3/cm3 are obtained based on models using the SMAP and simulated ∆τ, respectively.
The model without τ generates an r of 0.95 and an RMSE of 0.031 cm3/cm3. The efficiency and
necessity of considering τ are thus confirmed by its enhancement based on correlation and RMSE
against the one without τ, and the usefulness of approximating ∆τ by sinusoidal functions is also
validated. Influences of SM statistics in terms of mean and variance on the retrieval accuracy are
evaluated. This work unveils the interaction between CyGNSS data, SM, and τ and demonstrates the
feasibility of integrating the ∆τ approximation function into a bilinear regression model to obtain
SM results.

Keywords: GNSS-Reflectometry; CYGNSS; soil moisture; SMAP; vegetation optical depth

1. Introduction

Monitoring and understanding the characteristics of terrestrial hydrological parame-
ters, for example, the soil moisture (SM) distribution, are critical for the studies of climate
changes and carbon cycles [1,2]. Observations from the space appear as an invaluable
data source. Large-scale SM data are usually obtained by spaceborne payloads working at
microwave bands, as these signals are sensitive to the dielectric property of soil that is a
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function of SM [3]. The spaceborne missions associated with SM measurements include
Soil Moisture Active Passive (SMAP) [4], Soil Moisture and Ocean Salinity (SMOS) [5],
Sentinel-1 [6], and TerraSAR-X [7], etc. However, passive microwave satellites, e.g., SMAP
and SMOS, have a coarse spatial resolution of about 40 km. Furthermore, measurements
from synthetic aperture radar (SAR) systems, e.g., Sentinel-1 and TerraSAR-X, are signifi-
cantly affected by surface roughness and vegetation structure. Thus, it is desirable to have
multiple remote sensing data sources to complement each other.

During the recent decade, the technique of Global Navigation Satellite System (GNSS)-
Reflectometry (GNSS-R) has been well recognized as a useful remote sensing tool. GNSS-R
utilizes the L-band signal that can efficiently propagate through the atmosphere and
clouds, providing a 24-7 and all-weather surveillance [8,9]. In addition, signals at such
a frequency range are recommended for SM sensing since they are more susceptible to
the top-layer SM but less influenced by the surface conditions [10]. The technique of
GNSS-R has been applied in, e.g., ocean wind measurement [11–13], altimetry [14], and
ice detection [15]. With the availability of spaceborne data collected by the Cyclone GNSS
(CyGNSS) constellation, retrieving SM from such dataset on a large spatial scale has become
a flourishing topic [16–26]. Existing SM estimation approaches can be broadly divided into
two categories, specifically, machine learning (ML)-, and empirical model-based methods.
However, applications of ML algorithms in SM sensing (e.g., [21–23,26]) are generally
confronted with the following challenges: (1) the dependence on a great quality of ancillary
data, which may diminish the sensitivity of retrievals to CyGNSS data, (2) the difficulty
in interpreting the relationships between involved physical quantities, which blurs our
understanding about how GNSS-R observables respond to the target parameters, (3) the
requirement of huge training data, and (4) the poor generalization capability of a trained
model for other areas. Instead, the model-based inversions usually rely on less auxiliary
inputs, present clearer links between the CyGNSS observables and desired SM data, and
can be locally parameterized. Clarizia et al. [19] developed a trilinear regression function
to interpret the association of reflectivity-vegetation-roughness for estimating SM, and
Yan et al. [25] adopted a similar approach while utilizing CyGNSS-derived observables
to resolve the surface roughness effect. Those two models were constructed for a quasi-
global application over CyGNSS-covered areas. Chew and Small [17,18] found a strong
correlation between the variations of SM (∆SM) and CyGNSS data and substantiated such
relationship by using a linear regression. In this study, a model-based scheme that adopts a
bilinear regression (BR) is proposed for SM estimation. Relative to the studies in [19,25]
that employ a unified model for large areas, models in this work are parameterized in
a pixel-wise manner so that each of them can be tuned according to local characteristics.
The difference between this work and that in [17,18] lies in an extra consideration of the
VOD effect here, which compensates for the signal attenuation by vegetation. In summary,
from the authors’ best knowledge, there is no existing model-based work that aims to
address the VOD effect and to localize parameters at the same time in the GNSS-R society,
which is to be investigated in this article. Although the accomplished results obtained
by the previous research are very satisfactory, this work is believed to better interpret the
interaction between GNSS-R signals, SM, and vegetation, and consequently, to further
improve the retrieval accuracy.

The remainder of this article is organized as follows: the CyGNSS and reference
SMAP data are described in Section 2. The suggested SM retrieving model based on a
BR algorithm is detailed in Section 3. The experimental assessment and corresponding
discussions are presented in Section 4. The current work and possible future improvements
are summarized in Section 5.

2. Datasets

In this section, the acquisition and preparation of CyGNSS data as well as the usage of
the referenced SMAP SM and VOD data are described.
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2.1. CyGNSS Remote Sensing Data

The CyGNSS Level 1 (L1) Version 3.0 datasets are adopted (available at https://
podaac-tools.jpl.nasa.gov/drive/files/allData/cygnss/L1/v3.0 (accessed on 5 February
2022)), which are acquired by a constellation containing eight micro-satellites and offering
GNSS-R measurements over different locations for most of the subtropics. CyGNSS is
characterized by high spatial and temporal resolutions and good coverage from 38◦S to
38◦N. The smallest spatial resolution is approximately 3.5 km by 0.5 km and the revisit
time for a 25 km-grid cell is several hours and that for a 3 km-grid cell is about 8 days [27].
The data employed here were collected over the period from August 2019 to July 2021.

The CyGNSS variables involved in this work are bistatic radar cross section (BRCS,
or σ), ancillary information about the observation and its geometry, signal-to-noise ratio
(SNR), latitude and longitude of specular point (SP), distances from SP to the transmitter
and receiver (Rt and Rr), etc. The data quality control scheme generally follows that in [25].
In addition, data with the quality flag “SP in the sidelobe” are rejected, for which confidence
in the antenna gain is low.

2.2. Reference SMAP Products

The CyGNSS-based SM results are to be assessed with the SMAP SM data (Version
7) [28]. The spatio-temporal resolutions of the SMAP data are 36 × 36 km2 and daily,
respectively [4]. It should be noted that the SMAP (and SMOS) mission considers VOD in
models and parameters that are dependent on the type of coverage. This dataset contains
SM estimation, quality flag, and vegetation optical depth τ in the EASE-Grid (Version 2.0),
and they are used in this work. Data with a retrieval quality flag of value 0 or 8 are retained,
which indicates high-quality retrieval. SMAP products acquired between August 2019 and
July 2021 are utilized.

To facilitate the experimental evaluation in a subsequent section, the CyGNSS data are
spatially averaged into the EASE-Grid that is adopted by SMAP data (see also [25]). For
illustration, the collocated SMAP SM/τ and CyGNSS data averaged for the annual circle
from August 2019 are presented in Figure 1 and treated as lookup tables (LUTs) for the
following retrieval experiments. Land regions in white that are filtered out according to the
quality flag of SMAP data are mostly covered by heavy canopy.

（a） Annual means of SMAP SM

（b） Annual means of SMAP τ

Figure 1. Cont.

https://podaac-tools.jpl.nasa.gov/drive/files/allData/cygnss/L1/v3.0
https://podaac-tools.jpl.nasa.gov/drive/files/allData/cygnss/L1/v3.0
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CyGNSS �（ ）

Figure 1. Annual means of: (a) SMAP SM and (b) τ, and (c) CyGNSS Γ in log-scale.

3. SM Retrieval Method

Here, the procedures of retrieving SM from CyGNSS data are detailed, consisting of
computing CyGNSS observables and constructing a BR model.

In practice, CyGNSS-derived surface reflectivity Γ can be calculated using the CyGNSS
BRCS σ, through assuming that coherent reflections dominate over land (see e.g., [18–21,25,29])

Γ =
σ(Rt + Rr)

2

4π(RtRr)2 . (1)

As mentioned in Section 2.1, σ, Rt, and Rr are respectively BRCS, and the distances
from SP to the transmitter and receiver; they are available in the CyGNSS dataset.

With the premise of coherent reflections over smooth areas covered by vegetation,
Γ can be modeled as [21,30]

Γ(εs, θ) = <RL(εs, θ)2γ2 exp
[
−4k2s2 cos2(θ)

]
, (2)

where <RL is the surface’s Fresnel reflection coefficient, θ is the incidence angle, εs denotes
the dielectric constant of soil that is dependent on SM [3], transmissivity γ is the attenu-
ation due to signal propagation through vegetation and is a function of τ, k is the signal
wavenumber, and s is the surface root-mean-squared height. The exponential term depicts
the effect of surface roughness. Correspondingly, the CyGNSS Γ over a smooth vegetated
terrain can be associated with SM, θ, τ, and the surface roughness effect. In this present
work, the model for retrieving SM is to be built based on the local fluctuations of associated
variables and to be parameterized in a pixel-wise manner (see e.g., [17,18]). In consequence,
the variation of surface roughness within a certain region is deemed insignificant, and thus,
neglected here. In addition, the dependence of Γ on θ is corrected by following the proce-
dure in [16,17]. Therefore, the reliance of Γ on surface roughness and θ is eliminated. In
practice, ref. [16] or [17] did not compensate the effects of surface roughness nor vegetation
in their retrieval models (although [16] adopted mean surface slope to resolve the surface
roughness effect; such value was simply set as a fixed constant of 0.01 for all, and actually, it
neglected the temporal variations of vegetation and roughness as was done in [31]). In this
work, the temporal variability of surface roughness is also ignored; however, the impact of
vegetation is considered through the variation of VOD. As such, a dependence between
the variations in Γ, SM, and VOD (∆Γ, ∆SM, and ∆τ, respectively) is assumed in this study
and is modeled through a BR, in the following form (as a function of SM retrieval):

∆SM = f (∆Γ, ∆τ) = a∆ log(Γ) + b∆τ + c, (3)

where a, b, and c are coefficients to be determined. The corresponding flowchart of this
proposed method is presented in Figure 2.
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Figure 2. Flowchart of the proposed method.

Modeling of ∆τ

In the case of lacking SMAP ∆τ, a model is proposed for simulating such data as an
alternative. By assuming that ∆τ varies with a seasonal cycle, ∆τm at each EASE-Grid
pixel is approximated by a sinusoidal function with a fixed 12-month period (see a similar
procedure in [32]), as

∆τm = d sin(
π

6
t + φ) + g, (4)

where d, φ, and g are unknowns to be pixel-wisely determined, and t is the month index.
Subsequently, a model f1, which is the same as Equation (3), was considered, but with ∆τ
being replaced by ∆τm, as

∆SM = f1(∆Γ, ∆τm) = a1∆ log(Γ) + b1∆τm + c1, (5)

where the coefficients a1, b1, and c1 will be determined via training.
With the determined LUTs of annual mean SM, τ, and Γ along with coefficients a, b,

and c, posterior SM estimations (SMest) can be retrieved by inputting Γ and τ, i.e.,

SMest = a
[
log(Γ)− log(Γ)

]
+ b(τ − τ) + c + SM. (6)

4. Experiments and Evaluation

Here, the devised scheme for retrieving SM is performed and evaluated with SMAP
data between August 2019 and July 2021. Data collected during August 2019 to July 2020
were employed as training data to derive the coefficients for Equation (3), and the rest were
used as test data. In addition, a 10-fold cross-validation was adopted in the training phase
to prevent overfitting.

Here, τ, SM, and Γ are aggregated on a monthly basis. It is widely accepted that
monthly SM data are also critical inputs to climate change study and environment research.
Although SM data with better spatio-temporal resolutions are also useful and can be
achieved by CyGNSS data, the focus of this work is to prove the necessity of including
VOD in the retrieval model. In addition, aggregating data monthly can secure the spatial
coverage in the EASE-Grid that can facilitate the training phase (with more valid and
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consecutive data at each grid). More importantly, the averaging process can help improve
the data quality of CyGNSS Γ in SM sensing [25]. Then, the monthly averaged τ, SM, and
Γ are subtracted by their corresponding annual mean values (i.e., Figure 1) to determine
the variation of each variable. The variation results are exhibited in Figures 3–5 and used
as the training set.

To determine the simulated ∆τm, a least-squares fitting was performed to derive these
unknowns in Equation (5) using the training data and this model was assessed with both
the training and test sets. Through evaluation, an r of 0.88 and an RMSE of 0.018 between
∆τm and ∆τ were estimated, with the density plot being displayed in Figure 6.

Figure 3. Monthly SMAP VOD variability.

Figure 4. Monthly SMAP SM distribution.
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Figure 5. Monthly Γ CyGNSS distribution.

Figure 6. Comparison of the SMAP and modeled ∆τm.

4.1. Determination of the Coefficients

An obvious correlation between the presented ∆ log(Γ) and ∆SM can be well identified
by visually comparing the corresponding sub-figures in Figures 4 and 5. The correlation
coefficient (r) between the time-series of these two variables was computed, and the
outcomes are displayed in Figure 7, from which a strong and positive correlation can be
obtained for most of the areas. Such correlation between ∆ log(Γ) and ∆SM confirmed
the validity of the adopted BR model. It was also noticed that ∆τ and ∆SM were related
to some extent. As a result, ∆ log(Γ) and ∆τ appeared to be positively related. However,
Γ should be inversely proportional to τ, as verified subsequently based on the values of
coefficients a and b in Equation (3). Through implementing a BR using the ∆SM, ∆ log(Γ),
and ∆τ data, values of a, b, and c were determined and taken as LUTs. Regions with
three or less collocated measurements were rejected in this work. Coefficients a and
b illustrated in Figure 8a,b are dominated by positive values, which indicates ∆SM is
generally proportional to both ∆ log(Γ) and ∆τ; while ∆ log(Γ) and ∆τ are linked by the
coefficient −b/a, which appears mostly as negative values in Figure 8c. It can be noted
that the regions with problematic coefficients coincide with a low correlation coefficient
r in Figure 7, e.g., in northwest Australia. Through analyses, it was found that those
places are characterized by extremely low and/or invariant SM/τ (refer to Figure 1b,c for
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low SM/τ and Figure 9 for ∆SM/∆τ values). In addition, by referring to the land cover
classification provided in the SMAP dataset (see Figure 10), these regions are typically
barren, sparsely vegetated, or they have open shrublands. Furthermore, mean values of
SM, VOD, and Coefficients a, b, and c (SM, τ, a, b, and c) for the dominant land cover type
with more than 100 pixels over the globe are calculated and presented in the ascending
order of SM in Table 1. It can be noticed that SM, τ, a, and c are roughly proportional to
each other, while they are inversely proportional b. It can be interpreted that for regions
with higher SM, τ is generally higher, and more importantly, the sensitivity of CyGNSS
Γ to SM is stronger because a increases. Moreover, the changing trends of τ and a are not
monotonical, respectively showing a dig and pump for cropland/natural vegetation mosaic,
which proves the response of CyGNSS Γ to VOD as well. Thus, it can be summarized that
CyGNSS Γ can be linked with SM and VOD, which further validates the rationality of this
proposed model.

Figure 7. Correlation coefficient between ∆ log(Γ) and ∆SM.

(a)

(b)

(c)

Figure 8. Determined coefficients for Equation (3): (a) a, (b) b, and (c) −b/a.
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(a)

(b)

Figure 9. Annual mean of: (a) |∆SM| and (b) |∆τ|.

Figure 10. Land type data. Two separate locations that are respectively marked by a red astride
(11.51◦N, 37.53◦E) and a red circle (27.42◦S, 119.31◦E) are dominated by different land types for which
the retrieval performance varies.

Table 1. Averages of coefficients, SM and VOD.

Land Type SM
(cm3/cm3)

τ a b c

Barren or Sparsely Vegetated 0.0594 0.0010 0.0248 48.1977 −0.0002

Open Shrublands 0.0873 0.0609 0.0589 1.9156 0.0015

Grasslands 0.1487 0.1211 0.0812 0.7078 0.0039

Savannas 0.1584 0.3454 0.0785 0.7335 0.0067

Cropland/Natural Vegetation Mosaic 0.2001 0.2736 0.1225 0.6106 0.0074

Woody Savannas 0.2329 0.4912 0.0710 1.0443 0.0076

4.2. Validation and Assessment

Through examining both the 1-year long training and test data, a good agreement
was found between the retrieved and reference SMs, and the density plots are shown in
Figure 11. The obtained r is up to 0.98 for the training data. The use of SM facilitates
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the targeting of the desired value. Still, without including SM, satisfactory consistency
between the estimated and reference ∆SM was reached, with an r of 0.91 and a root-
mean-square error (RMSE) of 0.019 cm3/cm3. The good correlations between the derived
product and the SMAP SM product can be due to their consideration of VOD. Statistical
results with more details are listed in Table 2 for both training and test data. Negligible
degradation of accuracy in the test dataset compared with that for the training set proved
the generalization of this method. Figure 12 demonstrated the ∆SM time-series of two
locations that are respectively marked by a red astride (11.51◦N, 37.53◦E) and a red circle
(27.42◦S, 119.31◦E) in Figure 10. The former is characterized by good alignment between
both ∆SM results and shows a clear seasonal cycle. Conversely, the latter represents a
typical example with low correlation between two products. Moreover, corresponding
SMs are relatively low and stable without distinct seasonal patterns. To support this
argument, the impacts of mean and variance of SM on the retrieval results in terms of r
were evaluated. It was confirmed that SMs with low annual average and variation were
typically accompanied with higher discrepancy between two SM products and vice versa
(see Figure 13).

The impact of VOD on retrieval accuracy was analyzed and no obvious evidence of
varying contribution by sparse/dense vegetation was found, because the error distribution
was rather uniform over different VODs. Still, the proposed method that compensates the
VOD effect shows better performance than the one without, as demonstrated by Figure 14.

Figure 11. Density plot comparing the retrieved and SMAP SMs: (a) Training and (b) test data.
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Table 2. Accuracy of SM retrieval (RMSE in cm3/cm3)

Expression a∆ log(Γ) +
b∆τ + c

a1∆ log(Γ) +
b1∆τm + c1

a2∆ log(Γ) +
b2

a3∆τ + b3

Category Measure f f1 f2 f3

Training
r (SM) 0.98 0.97 0.96 0.95

r (∆SM) 0.91 0.90 0.81 0.79
RMSE 0.019 0.022 0.027 0.028

Test
r (SM) 0.95 0.93 0.93 0.91

r (∆SM) 0.81 0.80 0.72 0.62
RMSE 0.029 0.034 0.035 0.037

Overall
r (SM) 0.97 0.95 0.95 0.94

r (∆SM) 0.86 0.86 0.77 0.71
RMSE 0.024 0.028 0.031 0.033
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Figure 12. Time-series of retrieved and referenced ∆SM at: (a) (11.51◦N, 37.53◦E) (East Africa, marked
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Figure 13. Effects of SM statistics (a): variance and (b) mean on consistency between the retrieved
and reference SMs.

Figure 14. Density plot showing retrieval errors with (a) and without (b) considering VOD in the
retrieval model.
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4.3. Sensitivity of ∆SM to ∆τ and ∆Γ

Here, the performance of the proposed model using simulated ∆τm is assessed. Cor-
responding test results are shown in Table 2, and they are comparable with those of f in
terms of accuracy. These results demonstrated the applicability of sinusoidal functions for
simulating ∆τm, and consequently, the successful application of ∆τm for ∆SM inversion.

As mentioned previously, the correlation between ∆SM and ∆τ as well as ∆Γ was
noticed. Here, the sensitivity of ∆SM to ∆τ and ∆Γ was investigated separately through
testing two different models, f2 and f3, specifically,

∆SM = f2(∆Γ) = a2∆ log(Γ) + b2, (7)

and

∆SM = f3(∆τm) = a3∆τ + b3, (8)

where a2, b2, a3, and b3 are constants to be determined. After a training phase, the final
appraisals are tabulated in Table 2, from which one can conclude that (1) the inclusion of
both ∆τ and ∆Γ produces the best performance, even if ∆τm instead of ∆τ is employed and
(2) ∆SM is more dependent on ∆Γ than on ∆τ, which is evidenced by the better results of
f2 than f3. It is worth mentioning that f2 is similar to the model adopted in [17,18], which
does not compensate for the effect of τ. Our work here proved the necessity and efficiency
of involving VOD in estimating SM, which is illustrated by the degraded performance
(especially r for ∆SM) of f2 compared with both f and f1.

5. Conclusions

In this work, a new method is developed for retrieving soil moisture from the CyGNSS
L1 data, which is fulfilled by applying a bilinear regression. The proposed BR model
assumes the correlation among the variations of SM, VOD, and Γ. The performed compre-
hensive analyses demonstrated the validity and efficiency of this model. The agreement
between the retrieved and referenced SM was satisfactory, with an overall r of up to 0.97
and an RMSE of 0.024 cm3/cm3. The results are in better accordance with the reference
data where the mean and variance of SM are higher. In addition, a model was proposed as
an alternative to SMAP VOD so that the posterior SM estimation could be accomplished
solely from CyGNSS data. Superiority over the model without consideration of VOD
illustrated the robustness of the proposed BR approach as well as the applicability of the
VOD simulation scheme. Moreover, the sensitivity of the retrieval results to VOD and Γ
was discussed.

In the future, this proposed method will be modified for better spatio-temporal resolu-
tions and verified with in situ SM data. Furthermore, it is also meaningful to investigate the
effect of the presence of inland water bodies. In the present work, the regions of Amazon
and Congo were filtered out due to the SMAP quality flag; however, these areas are worth
investigating in the future with other suitable reference data. Still, temporal changes of
surface roughness and vegetation structure can influence the results and are worth consid-
ering as a future work. Moreover, different approaches have been proposed for SMAP or
SMOS data to consider VOD’s effect on the SM estimates. Some approaches consider the
complementarity between microwave and optical information and others are based on the
simultaneous retrieval of SM and VOD [33], which is worth investigating and expanding
to the GNSS-R technique in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

SM Soil Moisture
GNSS Global Navigation Satellite System
VOD Vegetation Optical Depth
CyGNSS Cyclone GNSS
SMAP Soil Moisture Active Passive
RMSEs Root-Mean-Square Errors
SMOS Soil Moisture and Ocean Salinity
GNSS-R Global Navigation Satellite System-Reflectometry
ML Machine Learning
BR Bilinear Regression
BRCS Bistatic Radar Cross Section
SNR Signal-To-Noise Ratio
SP Specular Point
LUTs Lookup Tables
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