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A B S T R A C T

Separate impacts of building and tree on the urban thermal environment have been studied extensively, but
their combined impacts, especially from both the horizontal (i.e., two-dimensional (2D)) and vertical (i.e.,
three-dimensional (3D)) perspectives remain largely unclear. Based on satellite thermal data and elaborate
2D and 3D urban morphology, herein we simultaneously investigate the separate and combined impacts of
building and tree over Nanjing in China from both the 2D and 3D perspectives. We further examine the day–
night contrast together with the sensitivity of such impacts to scale. Our results show that, when compared
with urban structures from a single dimension, the combination of 2D and 3D structures is more capable of
predicting urban land surface temperatures (LSTs) for both day and night. The assessments further illustrate
that the separate and combined impacts of building and tree on LSTs are usually more significant when the
spatial scale increases. As for the separate impacts of building and tree, 2D structure affects more urban
thermal environment than 3D structure at all spatial scales during the day, but an opposite trend occurs at
night. Moreover, for the combined impact of building and tree on LST across different scales, daytime and
nighttime LSTs are respectively dominated by 2D and 3D building structures. Combining 2D and 3D structures
improves the explained LST variation by 7.3%–11.1% and 25.3%–37.7% for day and night, respectively when
compared to using 2D structures only. These findings emphasize the need to incorporate both 2D and 3D urban
morphology to improve the urban thermal environment.
1. Introduction

Urbanization is a complex process characterized by the transition
of natural landscape into impervious surfaces [1,2]. One of the most
phenomenal effects of this landscape transition is the urban heat island
(UHI) [3]. UHI is able to increase the consumption of energy and
water as well as exert a great threat to public health, and it has been
therefore investigated over global cities [4–6]. Recent decades has been
witnessing an increasing amount of studies on surface UHI (SUHI)
with remote sensing [7–11], mostly because of the wide availability
of satellite-derived land surface temperature (LST) data acquired from
various satellite sensors (e.g., Advanced Spaceborne Thermal Emission

∗ Correspondence to: Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Pukou District, Nanjing, 210044, China.

and Reflection Radiometer (ASTER) [12] and Landsat Thematic Mapper
(TM) [13]). In addition to thermal data, satellite remote sensing further
facilitates the investigation of SUHI by obtaining detailed information
on urban fabrics and geometry (e.g., on buildings and trees) with
high-resolution visible and near-infrared images [14,15].

SUHI (or LST) is closely associated with urban morphology from
both the two-dimensional (2D) and three-dimensional (3D) perspec-
tives [16]. From the 2D perspective, previous concerns have been
concentrating on the relationships between SUHI (or LST) and land-
scape pattern (including composition and configuration [17], especially
for building and tree [18,19]. Previous studies have demonstrated that
the effect of the spatial configuration of building and tree on LST varied
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with position, orientation, and arrangement [18], and their in-between
relationships demonstrated a day–night contrast [18,20].

It is further suggested that the relationships between LST and the 2D
landscape pattern are scale-dependent [21]. A single scale of analysis
is always arbitrary, and thus generates mismatching results between
researches [22]. Investigation of the relationship between LST and
landscape pattern was therefore recommended at different scales si-
multaneously (i.e., statistical units of varying size) [23]. For instance,
among various scales, the unit sizes of 660 and 720 m were found the
most appropriate to examine the sensitivity of the relationship between
LST and landscape composition [24]. This may be explained by the fact
the interactions and exchanges across land cover patches exerted the
most important influences on the heat exchange at these scales [25].
In addition, current studies indicated that different influencing factors
may reflect ecological processes at different scales, and thus their
relative importances controlling urban thermal environment appear to
vary with the spatial scale [25,26].

Considering that 3D urban morphology can regulate urban thermal
environment by affecting air circulation, solar radiation and evapotran-
spiration within urban canyons [27–29], a few studies emerged recently
to explore the control of urban morphology on LST from the 3D per-
spective. Studies have illustrated that there existed a strong relationship
between vegetation height and LST, and LST decreased at an increasing
rate with vegetation height [30]. Similar to the 2D perspective case, the
relationships between LST and vertical tree structure during the day
differed from those at night [31]. Regardless of different seasons, the
taller the height of buildings are, the cooler urban thermal environment
is during the day [32].

Some recent studies attempted to investigate the impacts of building
and tree on UHI from both 2D and 3D perspectives, and found that
combining 2D and 3D urban morphology could better explain LST vari-
ations. However, there is a difference in relative importance between
2D and 3D building indicators towards regulating LST. LST was ob-
served more dependent on the 3D than 2D building indicators in Yazd,
Iran [33], while an opposite trend occurred in Wuhan, China [34].
Indicators such as building height, percent cover of building, and 3D
spatial orientation of buildings were found to be the strongest controls
among all the 2D and 3D building indicators [33,35].

Building and tree are mostly mutually inclusive over urban land-
scape. While the separate impacts of building and tree on local thermal
environment have been analyzed, their combined impacts of building
and tree from both the 2D and 3D perspectives remain largely unclear.
Urban thermal environment responsive to urban morphology is scale-
dependent, but as far as we know, there is still no attempt on how the
impacts on LST vary with scale from both the 2D and 3D perspectives.
This initiates an urgent need to understand the interactions between
the local thermal environment and building and tree at multiple spatial
scales from both the 2D and 3D perspectives. Here, we try to address
the following issues: (1) To what extent the combination of 2D and 3D
urban morphology will improve the explanatory power of LST varia-
tion, compared to using a single type of urban morphology? (2) What is
exactly the day–night contrast regarding the relative importance of 2D
and 3D urban morphology in regulating local thermal environment? (3)
How does the relative importance of 2D and 3D structures of building
and tree vary with spatial scale?

Considering these knowledge gaps, this study aims to investigate
systematically both the separate and combined effects of 2D and 3D
urban morphology (including both building and tree) at various spatial
scales. The day–night contrast of such effects will also be one of our
emphasis. The remainder of this paper is organized as follows. The
study area and data source are shown in Section 2. Section 3 describes
the methods, including the illustration of the indicators for 2D and
3D urban morphology, and the statistical analysis. The separate and
combined impacts of building and tree on the thermal environment as
well as their scale sensitivity are presented and discussed in Sections 4
and 5, respectively. Section 6 summarizes the conclusions. This study
may provide valuable insights for urban planners in designing heat
2

mitigation strategies over urban surfaces. a
2. Study area and data

2.1. Study area

As the capital of Jiangsu Province, China, Nanjing city is situated
in the center of the lower reaches of the Yangtze River and has a
population of more than 8.2 million. Nanjing is characterized by a
subtropical monsoon climate with four pronounced seasons, and is
acknowledged as one of the ‘‘Four Furnace Cities" in China due to its hot
and humid summer [36]. The monthly mean temperature ranges from
2.2 ◦C in January to 28.6 ◦C in July, with a maximum temperature
more than 40 ◦C. It is reported that an increasing number of hot
days and nights were observed, and heat waves are predicted to be
more frequent in Nanjing [37]. Therefore, research into the impacts
of building and tree on the urban thermal environment of Nanjing was
considered as an ideal case. The study area in this research is located
in the central downtown of Nanjing, covering a total of area about
205 km2 (Fig. 1).

2.2. Data and pre-processing

2.2.1. Land surface temperature
Given that our study was devoted to explore how building and

tree interact to impact diurnal LST, ASTER LST was used owing to
its ability of providing daytime and nighttime LSTs with high spatial
resolution. In this work, LST data was obtained from ASTER surface
kinetic temperature product1 (i.e., AST 08) with the unit of 90 m (https:
//lpdaac.usgs.gov/products/ast_08v003/). The ASTER surface kinetic
temperature is retrieved by adopting Planck’s Law using the emissivity
values from temperature-emissivity separation (TES) approach, which
utilizes atmospherically correct ASTER surface radiance (TIR) data. The
absolute accuracy of ASTER LST was within ±1.5 K [12,14,38]. To
make the acquisition time of LST data as closest as possible to the date
of airborne LiDAR data, together with the data quality and availabil-
ity, daytime LST image was obtained about five hours and forty one
minutes after sunrise with 11:00 a.m on May 1, 2011, while nighttime
LST image was acquired about five hours and six minutes after sunset
with 22:19 p.m on April 4, 2011. The surface kinetic temperature
was converted into Celsius degree for further LST analysis (Fig. 2(c)
and (d)). Although there was an approximate two-year time difference
between the acquisition of IKONOS-2 and LST images, limited change
in the spatial pattern of building and tree can be observed between
2009 and 2011, owing to that our study area was confined in relatively
stable downtown of Nanjing.

2.2.2. LiDAR data and IKONOS-2 image
The data used in this work, as shown in Table 1, was collected

from four different sources. Airborne LiDAR data was employed to
improve classification performance and obtain the vertical structures
of urban morphology. The acquisition time of LiDAR data was on
April 21 and 22, 2009, and the mean density of LiDAR data was
approximately 4 points/m2. We employed 2D grids with 3 m and 3.2

spatial resolution to process LiDAR data. The digital elevation model
DEM) was produced by applying a triangular irregular network to
round points, while by summarizing elevation of the points of the
irst return, we obtained the digital surface model (DSM). A normalized
SM (nDSM) layer, representing only the above-ground feature, was
roduced by subtracting the DSM with DEM. LiDAR-derived products

1 ASTERTIRPointingAngle and ASTERSceneOrientationAngle were 8.57◦

nd 9.67◦ for daytime LST (11:00 a.m) and −8.56◦ and 170.33◦ for nighttime
ST (10:19 p.m). ASTERTIRPointingAngle represents the pointing angle of
he ASTER Thermal Infrared (TIR) sensor, while ASTERSceneOrientationAngle
enotes the azimuth angle made by the meridian at the ASTER scene center
nd the along-track direction, rotating from North toward East.

https://lpdaac.usgs.gov/products/ast_08v003/
https://lpdaac.usgs.gov/products/ast_08v003/
https://lpdaac.usgs.gov/products/ast_08v003/
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Fig. 1. (a) Location of the study area; (b) Land cover map of the study area, achieved by the combination of IKONOS-2 and LiDAR data; (c) normalized digital surface model
(nDSM) derived from LiDAR data.
Fig. 2. (a) Building height; (b) Tree height; (c) and (d) are daytime ASTER land surface
temperature (May 1, 2011) and nighttime ASTER land surface temperature (April 4,
2011), respectively.

with a pixel size of 3.2 m were used to integrate with the IKONOS-2
image to derive land cover map, whereas 3 m LiDAR-derived products
were produced to measure the 3D information of building and tree
(Fig. 2(a) and (b)).

IKONOS-2 multispectral satellite imagery used was acquired on
June 18, 2009. The image consists of four multispectral channels
with a spatial resolution of 3.2 m covering blue (445–516 nm), green
(506–595 nm), red (632–698 nm) and near-infrared (757–853 nm).
IKONOS-2 image enabled us to map high-resolution urban land cover.
Note that all the data mentioned above were co-georeferenced to enable
the consistency of the corresponding spatial position.
3

2.2.3. Land cover map
Urban land cover map was achieved by combining IKONOS-2 and

LiDAR data (Fig. 3), since the data fusion can compensate for the limita-
tions of each other to improve classification accuracy. In this work, we
proposed to use an object-based approach to classify urban land cover.
First, image objects were created with multiresolution segmentation,
which is based on four spectral bands and LiDAR-derived DEM, DSM,
nDSM and intensity layers. Second, a wide variety of object features
were calculated, such as LiDAR-derived intensity and return features.
Finally, the object-based land cover classification was implemented
using Random Forest classifier. Two parameters should be carefully
determined for Random Forest: the number of trees (𝑛𝑡𝑟𝑒𝑒) and the
number of features employed for the best split at each mode (𝑚𝑡𝑟𝑦).
𝑛𝑡𝑟𝑒𝑒 and 𝑚𝑡𝑟𝑦 were set to 500 and the square root of the number of
input features, respectively. More detailed information about parameter
setting can be accessed in [39]. The classified urban land cover with
3.2 m spatial resolution was documented in Fig. 1(b). The overall
accuracy of urban land cover was achieved by 99.35%, and class-
specific accuracies ranged from 98.85% to 99.92%. The producer’s and
user’s accuracies were 99.35% and 99.0% for building and 98.85%
and 99.13% for tree. The more detailed information, which is related
to ground reference and classification accuracy, can be referenced in
Supplementary Table A.1 and A.2. For further analysis, the land cover
map was resampled to the spatial resolution of 3 m.

3. Methodology

3.1. Measuring the 2D landscape pattern of building and tree

Previous research suggested that the landscape pattern (i.e., com-
position and configuration) had significant impacts on UHI [19,40,41].
Composition delineates the features related to the abundance and
diversity of patches, while configuration refers to the spatial arrange-
ment of patches. Based on the principles of interpretable, minimum
redundancy, theoretical and practical significance [26,42], six widely-
used landscape metrics were selected to measure 2D landscape pattern
of building and tree and were mathematically displayed in Table 2,
including one composition metrics: percentage of landscape (PLAND),
and five configuration metrics: largest patch index (LPI), edge density
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Table 1
Data used in this research (Data description).

Satellite data Date Resolution Analysis

IKONOS-2 6/18/2009 3.2 m Land cover classification
Airborne LiDAR 4/21/2009 4.10 points/m2

Land cover classification and 3D urban morphology4/22/2009 4.23 points/m2

Google Earth 2009 / Ground reference for land cover mapping

ASTER(AST_08) 04/04/2011 90 m Land surface temperature
14:19:28Z
05/01/2011 90 m
03:00:46Z
Fig. 3. Conceptual flowchart of the data analysis.
(ED), patch density (PD), patch cohesion index (COHESION) and mean
patch shape index (SHAPE_MN). The software Fragstats 4.2 was used
to calculate the landscape metric mentioned above, using the 8-cell
neighborhood rule (http://www.umass.edu/). Moreover, edge density
was calculated under the condition that no boundary interface was
counted as edge.

3.2. Indicators of 3D urban morphology

In this study, numerous indicators were selected to quantify 3D
morphology. Table 3 summarized the 3D characteristic indicators of
building and tree adopted in this study. All these indices were com-
puted based on the land cover map, DSM and nDSM mentioned above
(see Section 2.2.2). BH_Mean and TH_Mean indicated respectively the
mean building and tree height above ground. SVF𝑏 was considered as
the potential factors. SVF suggests the ratio of the radiation received by
a planar surface to that emitted from the entire hemispheric environ-
ment [44]. Therefore, when exploring the separate impact of building
on LST, partial SVF (i.e., SVF𝑏), which describes the obstructions of
sky raised by building, was explored in this work to remove action
of tree. It was calculated using the Urban Multi-scale Environmental
Predictor model, which can be used for various applications in the light
of climate change mitigation [45]. Furthermore, even though SVF𝑡,
which represents of the block of sky raised by tree, is an potential
impact factor of LST, it was not computed in this work, owing to the
lack of accurate transmissivity of light through vegetation and percent
of tree canopy height.

3.3. Statistical analysis

Given the pixel size of LST data and the spatial scales used in the
previous studies [26,46], the entire landscape of the study area was di-
vided into five sizes of statistical units: 90 m×90 m (i.e., the equal pixel
4

size of ASTER LST), 270 m×270 m, 450 m×450 m, 630 m×630 m and
810 m×810 m, and the mean LST along with influencing factors were
computed for each statistical unit (Fig. 3). To analyze the influences
of 2D and 3D urban morphology on diurnal LST, a series of statistical
approaches were conducted. Partial correlation was first performed to
evaluate the relation between diurnal LST and building or tree, as
it can avoid the covariate impacts between 2D and 3D explanatory
metrics [34,47]. Related results and discussions were presented in the
supplementary file (Supplementary Section A.2 and A.3).

Next, stepwise multiple linear regression model was used to ex-
plore how building and tree exerted on diurnal LST separately and
combinedly, which were performed with the ‘‘MASS" package of R.
Independent variables entered the final regression models were selected
by Akaike information criterion (AIC) and stepwise selection, which
is a combination of the forward and backward selection techniques.
Adjusted R2 was selected to estimate the explanatory power of models,
while standardized coefficients were employed to measure the relative
contribution of each variable to diurnal LST. To investigate the separate
impacts of building and tree on LST, we built three regression models
for building and tree, respectively: Model-1 with 2D building/tree
structure; model-2 with 3D building/tree structure; and model-3 with
2D and 3D building/tree structures. On the other hand, four regression
models were built to clarify how building and tree interacted to impact
the diurnal LST, which can be formulated as a function of: 2D building
and tree structures; 2D building and tree structures together with 3D
building structure; 2D building and tree structures combined with 3D
tree structure, and 2D and 3D building and tree structures. Moreover, to
validate the performances of these models, 70% of data were randomly
selected as training set, and the remaining 30% data were employed for
validation. Root mean square error (RMSE) was used as an accuracy
metric to evaluate these estimations [48]. We repeated 100 times to
report the average value of RMSE to avoid biased estimation.

http://www.umass.edu/
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Table 2
Landscape metrics used in this study to quantify landscape pattern of urban building and tree [43].

Metrics (abbreviation) Definition Calculation (unit) Variable name

Percentage of landscape
(PLAND)

Percent cover of a given land cover class within
an analysis grid

𝑃𝐿𝐴𝑁𝐷𝑖 =
∑𝑛

𝑗=1 𝑎𝑗
𝐴

× 100 (%) PER_Build, PER_Tree

Patch density (PD) Density of landscape patches within an analysis
grid.

𝑃𝐷𝑖 =
𝑛
𝐴
× 10, 000 × 100 (𝑛∕𝑘𝑚2) PD_Build, PD_Tree

Largest patch index
(LPI)

The area proportion of the largest building/tree
patch within an analysis grid.

𝐿𝑃𝐼 = 𝑚𝑎𝑥𝑎𝑗
𝐴

× 100 LPI_Build, LPI_Tree

Edge density (ED) Sum of patch perimeters per hectare within an
analysis grid.

𝐸𝐷𝑖 =
∑𝑛

𝑗=1 𝑒𝑗
𝐴

× 10, 000 (𝑚∕ℎ𝑎) ED_Build, ED_Tree

Mean patch shape
index (SHAPE_MN)

The average value of shape index of landscape
patches within an analysis grid.

𝑆𝐻𝐴𝑃𝐸_𝑀𝑁𝑖 =
1
𝑛

∑𝑛
𝑗=1

𝑝𝑗
4×√𝑎𝑗

SHAPE_MN_Build,
SHAPE_MN_Tree

Patch cohesion index
(COHESION)

A measure of physical connectedness for landscape
patches within an analysis grid.

𝐶𝑂𝐻𝐸𝑆𝐼𝑂𝑁𝑖 =

[

1 −
∑𝑛

𝑗=1 𝑝
∗
𝑗

∑𝑛
𝑗=1 𝑝

∗
𝑗

√

𝑎∗𝑗

]

×
[

1 − 1
√

𝑍

]

× 100 COHESION_Build,
COHESION_Tree

𝐴 = the area of an analysis grid; 𝑛 = number of landscape patches within an analysis grid; 𝑒𝑗 = lengths of edge segments of landscape patch 𝑗; 𝑃𝑗 = perimeter of landscape patch
𝑗; 𝑎𝑗 = area of landscape patch 𝑗; 𝑃 ∗

𝑗 = perimeter of landscape patch 𝑗 regarding to number of cell surfaces; 𝑎∗𝑗 = area of landscape patch 𝑗 with respect to number of cells; 𝑍 =
total number of cells within an analysis grid.
Table 3
Summary of the 3D building and tree characteristic metrics considered in this research.

Categories Metrics (abbreviation) Description Equations

Building Mean building height (BH_Mean) Mean building height within a statistical unit. 𝐵𝐻_𝑀𝑒𝑎𝑛𝑖 =
∑𝑛

𝑗=1 𝐵𝐻𝑗

𝑛
Maximum height of buildings (BH_Max) Maximum height of building within a statistical unit. 𝐵𝐻_𝑀𝑎𝑥𝑖 = 𝑀𝑎𝑥(𝐵𝐻𝑗 ), 𝑗 = 1, 2, 3,… , 𝑛

Variance of building height (BH_SD) Standard deviation of building height within a statistical
unit.

𝐵𝐻_𝑆𝐷𝑖 =
√

∑𝑛
𝑗=1 (𝐵𝐻𝑗−𝐵𝐻_𝑚𝑒𝑎𝑛𝑖 )2

𝑛

Normalized variance of building height
(NBH_SD)

The ratio of variance to mean of building height within a
statistical unit.

𝑁𝐵𝐻_𝑆𝐷𝑖 =
𝐵𝐻_𝑆𝐷𝑖

𝐵𝐻_𝑀𝑒𝑎𝑛𝑖

Sky view factor achieved by buildings
(SVF𝑏)

Sky view factor responsible for blocking of sky by
buildings.

𝑆𝑉 𝐹 _𝐵𝑢𝑖𝑙𝑑𝑖 =
∑𝑛

𝑗=1 𝑆𝑉 𝐹 _𝐵𝑢𝑖𝑙𝑑𝑗
𝑛

Building height value at 10th percentile
(BH_P10)

The 10th percentile value of building height, which is
derived from DSM.

𝐵𝐻_𝑃 10𝑖 = 10𝑡ℎ𝑃 𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝐵𝐻_𝐷𝑆𝑀𝑗 )

Building height value at 90th percentile
(BH_P90)

The 90th percentile value of building height, which is
derived from DSM.

𝐵𝐻_𝑃 90𝑖 = 90𝑡ℎ𝑃 𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝐵𝐻_𝐷𝑆𝑀𝑗 )

Tree Mean tree height (TH_Mean) Mean of tree canopy height within an analysis grid 𝑇𝐻_𝑀𝑒𝑎𝑛𝑖 =
∑𝑛

𝑗=1 𝑇𝐻𝑗

𝑛
Maximum height of tree canopy (TH_Max) Maximum of tree canopy height within an analysis grid. 𝑇𝐻_𝑀𝑎𝑥𝑖 = 𝑀𝑎𝑥(𝑇𝐻𝑗 ), 𝑗 = 1, 2, 3,… , 𝑛

Variance of tree canopy height (TH_SD) Standard deviation of tree canopy height within an
analysis grid.

𝑇𝐻_𝑆𝐷𝑖 =
√

∑𝑛
𝑗=1 (𝑇𝐻𝑗−𝑇𝐻_𝑚𝑒𝑎𝑛𝑖 )2

𝑛

Normalized tree canopy height variance
(NTH_SD)

The ratio between variance and mean in terms of tree
canopy height within an analysis grid

𝑁𝑇𝐻_𝑆𝐷𝑖 =
𝑇𝐻_𝑆𝐷𝑖

𝑇𝐻_𝑀𝑒𝑎𝑛𝑖

10th percentile tree height value (TH_P10) The 10th percentile value of DSM-derived tree height. 𝑇𝐻_𝑃 10𝑖 = 10𝑡ℎ𝑃 𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝐵𝐻_𝐷𝑆𝑀𝑗 )
90th percentile tree height value (TH_P90) The 90th percentile value of DSM-derived tree height. 𝑇𝐻_𝑃 90𝑖 = 90𝑡ℎ𝑃 𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝐵𝐻_𝐷𝑆𝑀𝑗 )

𝐵𝐻𝑗 = building height calculated for grid 𝑗 within the statistical unit 𝑖; 𝑆𝑉 𝐹 _𝐵𝑢𝑖𝑙𝑑𝑗 = sky view factor calculated based on building for grid 𝑗 within the analysis grid 𝑖; 𝐵𝐻_𝐷𝑆𝑀𝑗
epresents the DSM-derived building height. 𝑇𝐻𝑗 = tree canopy height computed for grid 𝑗 within the statistical unit 𝑖; 𝑆𝑉 𝐹 _𝑇 𝑟𝑒𝑒𝑗 = sky view factor calculated based on tree for
rid 𝑗 within the analysis grid 𝑖; 𝑇𝐻_𝐷𝑆𝑀𝑗 corresponds to the height of DSM-derived tree height.
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Finally, to distinguish the relative importance of different sets of
redictor variables while exploring the impacts of building and tree
n LST, variation partition was used. Variation partition could divide
ST variation into three major fractions [49,50]: (1) unique effects
f each independent variable; (2) common effects of in all possible
ombinations of independent variables; (3) the unexplained variation
n LST. Common effects arise because there was correlation between
xplanatory variables, and thus their impacts on the LST cannot be
tatistically split [49].

. Results and analysis

.1. Spatial characteristics of diurnal LST and its drivers

Large discrepancies existed for the spatial patterns of daytime and
ighttime LSTs (Fig. 2(c) and (d)). During the day, areas with high
ST were concentrated mainly in the southern and northern regions,
hereas at night, they were mostly located in the central part. The
aytime LST ranged from 19.45 ◦C to 43.35 ◦C, with a mean of 31.08 ◦C
nd standard deviation of 2.31 ◦C. During the night, the average
nd standard deviation of LST were respectively 9.01 and 1.66 ◦C
Supplementary Table A.3, A.4, A.5 and A.6). The analytical unit of
0 m×90 m was taken as case-study to elucidate the spatial pattern
5

f building and tree. Building and tree covered 43.97% and 30.12%
f the study area, respectively. The mean building height varied from
.0 m to 130.33 m, while the mean and SD values of tree height were
.70 m and 4.86 m separately. The patch and edge density of building
ere higher than that of tree, suggesting that building patches were

elatively more fragmented (Supplementary Fig. A.1).

.2. Effects of 2D and 3D characteristics of building on LST

The separate and combined impacts of 2D and 3D building mor-
hology on diurnal LST were firstly investigated, as is shown in Fig. 4.
espite of day and night, the explanatory power of regression models
ecame stronger at a larger statistical unit. This may be due to that,
t high resolution, some units may be clearly hit by the sun while
ome other are in the shade. Then larger is the unit, more chance you
ave to eliminate the shading variability due to the spatial variation of
rban fabric. In contrast, with the increase of statistical size, differences
f thermal characteristics between analytical units become smaller,
eading to more nighttime LST variation be explained by building.

During the day, the model, using both 2D and 3D building met-
ics, obtained the highest R2. The regression model with only the 3D
uilding metrics explained the lowest variation in daytime LST across
ifferent scales. At night, the regression model with only 3D building
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Fig. 4. Adjusted determinant coefficients (R2) of stepwise multiple linear regressions
f 2D and 3D building characteristics with daytime and nighttime LSTs.

etrics accounted for more variation, compared to the model with only
D building metrics (Fig. 4(b)). 2D and 3D building metrics considered
ogether can explain the highest fraction of variation in nighttime LST.
oreover, the regression model with 2D and 3D building structures

chieved lower RMSE for both day and night, compared to the models
ith only 2D or 3D building structure (Table 4). Next, the results, which

s related to the unique contributions of 2D and 3D building metrics
o explaining the LST variation, indicated that 2D building metrics
lone explained the largest fraction of the LST variation in the daytime,
hereas the contribution of the unique effect of 3D building metrics to
ighttime LST was the most important (Supplementary Fig. A.2).

.3. Impacts of horizontal and vertical structures of tree on LST

Results of regression models indicated that much more variation in
aytime LST can be explained by tree than in nighttime LST (Fig. 5).
uring the day, the adjusted R2 demonstrated the impacts of horizontal

ree variables on LST were stronger than that of vertical tree variables.
he model, including horizontal and vertical tree variables, accounted
or a larger proportion of LST variation at night, but an inverse
rend was demonstrated during the day. The model with 2D and 3D
ree structures tended to explain less variation in daytime LST. This
s because the cooling effect of tree canopy within larger statistical
nits is weakened by the impact of surrounding landscape [51]. In
ontrast, at night, LST was mainly dominated by vertical tree structure.
n increase in analytical unit tend to compromise the differences of
ertical tree structure between analytical units, resulting in more LST
o be accounted for. However, there are some differences in the scale-
ependent response of tree to daytime and nighttime LSTs. During the
ay, the explanatory power of the regression model with vertical tree
ariables increased modestly as statistical size increased, but opposite
rends were observed from the other two models (Fig. 5(a)). In contrast
o daytime LST, the larger the statistical size, the more variation in
ighttime LST tree could explain for all three models (Fig. 5(b)). In
ddition, RMSE suggested that regression model with 2D and 3D tree
tructures performed better in estimating daytime and nighttime LSTs
Table 4).

Results of variation partitioning implied that the unique effect of
orizontal tree structure played a more important role than that of
ertical tree structure in influencing daytime LST (Supplementary Fig.
.4). In contrast, vertical tree structure alone explained more nighttime
ST variation than horizontal tree structure across all statistical scales.
nother one was that there was a large difference between daytime
nd nighttime LSTs, in terms of explanatory power common to both
orizontal and vertical variables, which results from the correlation be-
ween horizontal and vertical tree variables as shown in Supplementary
6

ig. A.3.
Fig. 5. Adjusted R2 of stepwise multiple linear regressions of horizontal and vertical
structure of tree with daytime and nighttime LSTs.

Fig. 6. Adjusted R2 of stepwise multiple linear regressions with daytime and nighttime
LSTs, while jointly considering building and tree.

4.4. Insight into the coupling influences of building and tree on LST

It can be observed from Fig. 6, combining 2D and 3D metrics of
building and tree obtained the best R2, and the least LST variation
was explained by the model with only 2D metrics of building and
tree, regardless of daytime and nighttime. The adjusted R2 of the four
models increased as the statistical size increased. During the day, when
the statistical size was larger than 90 m, the LST variation was better
explained by the models with the combination of all 2D metrics and
3D tree metrics, compared to the model with the combination of all 2D
metrics and 3D building metrics. However, at night, the explanatory
power of the model with only all 2D metric can be enhanced better
by adding 3D building metrics than by adding 3D tree metrics at all
statistical scales. The model with all 2D metrics achieved an RMSE of
1.32 for nighttime LST, and RMSE was decreased to 0.94 by adding all
3D metrics at 810 m (Table 5).

Then, two different mechanisms were utilized to quantify the rela-
tive contributions of 2D and 3D structures to explaining LST variation.
One way was to divide explanatory variables into two groups: 2D
building and tree metrics, and 3D building and tree metrics. During
the day, 2D structures of building and tree alone explained larger
proportion of LST variation across all statistical scales, compared to
their 3D structures (Supplementary Fig. A.5). Furthermore, there was a
large proportion of variation in daytime LST, which was accounted for

by the common impacts of 2D and 3D structures. In contrast, variation
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Table 4
RMSE values of regression models based on 2D and 3D structures of building or tree.

Time Scale Building Tree

2D Structure 3D Structure 2D + 3D structures 2D Structure 3D Structure 2D + 3D structures

Daytime 90 m 2.06 2.19 1.88 1.96 2.19 1.91
270 m 1.88 2.09 1.65 1.85 2.06 1.83
450 m 1.78 2.06 1.56 1.85 1.99 1.81
630 m 1.65 2.06 1.51 1.83 1.91 1.81
810 m 1.62 2.07 1.50 1.81 1.91 1.80

Nighttime 90 m 1.62 1.44 1.38 1.61 1.61 1.53
270 m 1.47 1.30 1.24 1.45 1.41 1.33
450 m 1.42 1.26 1.19 1.40 1.36 1.26
630 m 1.39 1.23 1.19 1.32 1.28 1.19
810 m 1.37 1.24 1.19 1.31 1.29 1.17
in nighttime LST was mainly accounted for by the unique impact of 3D
building and tree structures.

Another way was to divide explanatory variables into four sets:
2D building metrics, 3D building metrics, horizontal tree metrics, and
vertical tree metrics. As can be seen from Fig. 7, variation in daytime
LST was best explained by the unique effect of 2D building metrics
at all statistical scales, regarding the unique fractions. In addition, the
independent contribution of 2D building metrics was larger than that
of 3D building metrics. Vertical tree variables independently captured
more variation in daytime LST compared to horizontal tree variables at
all scales except the statistical size of 90 m.

The result of the variation partition at night was presented in Fig. 8.
As for the unique effects, 3D building metrics alone accounted for
the highest amount of variation in nighttime LST. The nighttime LST
variation uniquely explained by 3D building metrics was larger than
that of 2D building metrics across all five statistical scales, which is
contrary to the finding during the day. With regard to tree, much more
nighttime LST variation can be explained by horizontal tree variables
alone than by vertical tree variables, when the statistical size was
smaller than 810 m. Moreover, the unique effect of the vertical tree
variable was stronger with the increase of statistical size.

5. Discussion

5.1. The extent to which combining 2D and 3D structures improve the
explanatory power of LST variation compared to individual structures

With respect to the separate and interacting impacts of building and
tree on LST, the differences in explaining LST variation remain poorly
understood when 2D and 3D structures were jointly and separately
considered. In this study, compared to 2D and 3D structures used sepa-
rately, the combination of two groups of variables could explain more
in LST variation, which is similar to some previous research [31,34,52].
However, different degrees of the enhancement were observed for day
and night. As for the separate impact of building on daytime LST across
five statistical scales (Fig. 4), combining 2D and 3D building structures
improved the explanatory powers of LST by 8.5%–14.5% and 23.2%–
32.1%, respectively, compared to using separate 2D and 3D structures.
When horizontal and vertical structures of tree were put together to
explain LST variation (Fig. 5), the explanatory ability of horizontal or
vertical structure in LST was enhanced more pronounced at night than
during the day. The model with vertical structure of tree increased the
explanatory power of nighttime LST by 7.1%–13.8% with the inclusion
of horizontal tree structure. By adding vertical tree structure to the
model with horizontal tree structure, 8.1%–20.5% more nighttime LST
variation was captured.

When compared to the combined impact of building and tree on
LST (Fig. 6), the explanatory powers of the model with 2D structures of
building and tree were improved by 7.3%–11.1% and 25.3%–37.7% for
daytime and nighttime LSTs separately. Another important finding was
that the combination of building and tree explained a larger proportion
of LST variation both in the day and night at all statistical sizes, except
7

90 m, compared to their separate impacts. This indicated it needs to
explore the combined impacts of building and tree on LST with finer
resolution LST data [53]. The maximum joint explanatory power of
building and tree reached at the largest statistical size (810 m), but a
portion of daytime LST variation (21.5%) and nighttime LST variation
(36.7%) remained unexplained. This suggested the existence of a more
complex mechanism underlying the spatial pattern of diurnal LST,
and that more influencing factors such as water bodies and building
material need to be considered [34,54,55].

5.2. The separate impacts of building and tree on LST: diurnal contrast and
scale-dependence of relative importance of 2D and 3D structures

As for the impact of building on daytime LST, 2D building metrics
showed a stronger influence on daytime LST compared to 3D build-
ing metrics, which is consistent with the study conducted in Wuhan,
China [34]. It indicated that, during the day, though 3D building
structure could impact the amount of incoming solar radiation and heat
dissipation, it was constrained by landscape pattern of building [32].
However, some previous studies found the contradictory trend [33],
owing to the difference in the climatic zones [56]. In contrast, 3D build-
ing metrics acted as a more important role than 2D building metrics in
impacting nighttime LST. When the separate impact of tree on daytime
LST was investigated, horizontal tree variables affected LST more than
vertical tree variables. However, opposite trend was found at night.

Regression models with 2D and 3D building metrics showed that
PER_Build was the most important factor for predicting daytime LST
across all scales (Supplementary Table A.7). Moreover, the relative
importance of PER_Build in predicting daytime LST increased with
increasing statistical size, which is consistent with some previous
study [32]. PER_Build had a strong positive correlation with day-
time LST across all statistical scales because higher PER_Build could
increase sensible flux but reduce latent flux [57]. However, the scale-
dependence variation in the major predictor of nighttime LST was
notable, where the most important factors were SVF𝑏 at the statistical
size less than or equal to 450 m, and were BH_Mean and BH_SD
respectively for 630 m and 810 m. BH_Mean had positive relationships
with nighttime LST across all statistical scales (Supplementary Table
A.7), which is consistent with the conclusions of other studies [58–60].
BH_SD had a significantly negative impact on nighttime LST, owing
to that higher BH_SD may benefit the increase of wind circulation to
release heat [27,61]. SVF𝑏 was negatively correlated with nighttime
LST, which was determined by the combined impacts of the following
two processes. Higher SVF𝑏 always corresponded to the more incoming
solar radiation to reach the surface, and thus increased the LST [34]. In
contrast, higher SVF𝑏 could decrease LST by improving air circulation
and the loss of longwave radiation [29].

The relationships between tree and LST determined that PER_Tree
was the most important determinant of daytime LST for the statistical
size of 90 m and 270 m (Supplementary Table A.8), which is consistent
with many previous studies [18,26,62]. When the statistical size was
larger than 270 m, daytime LST was primarily influenced by LPI_Tree.



Building and Environment 194 (2021) 107650J. Chen et al.

o

H
w
t
i
d
t

Table 5
RMSE values of regression models based on 2D and 3D structures of building and tree.

Time Scale 2D Building + 2D Tree
structures

2D Building + 2D Tree +
3D Building structures

2D Building + 2D Tree +
3D Tree structures

2D Building + 3D Building +
2D Tree + 3D Tree structures

Daytime 90 m 1.82 1.73 1.78 1.71
270 m 1.64 1.52 1.53 1.45
450 m 1.58 1.46 1.42 1.35
630 m 1.52 1.44 1.39 1.34
810 m 1.53 1.48 1.39 1.31

Nighttime 90 m 1.58 1.36 1.50 1.35
270 m 1.43 1.20 1.30 1.14
450 m 1.36 1.11 1.20 1.04
630 m 1.28 1.08 1.15 1.00
810 m 1.32 1.09 1.12 0.94
Fig. 7. The unique and common impacts of 2D and 3D characteristics of building and tree on daytime LST. (I refers to 2D characteristics of building; II refers to 3D characteristics
of building; III denotes horizontal structures of tree; IV denotes vertical structures of tree.).
Fig. 8. The unique and common impacts of 2D and 3D characteristics of building and tree on nighttime LST. (I refers to 2D characteristics of building; II refers to 3D characteristics
f building; III denotes horizontal structures of tree; IV denotes vertical structures of tree.).
owever, nighttime LST was primarily influenced by PER_Tree across
hen the size of statistical scale was larger than 270 m. Nevertheless,

his study found that the tree cooling efficiency, which is defined as the
ncrease in LST with the increase of 1% tree cover [26,63], was higher
uring the day than at night at the finest scale (90 m), but an opposite
rend was shown at other statistical scales.
8

5.3. Sensitivity of relative importance of 2D and 3D structures to scale and
diurnal LST regarding the combined impact of building and tree

Our findings indicated that 2D structures of building and tree played
a more important role in shaping daytime LST compared to these 3D
structures, but the opposite trend was presented at night (Supplemen-
tary Fig. A.5). More specially, 2D and 3D building indicators showed
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the strongest impact on daytime and nighttime LSTs, respectively.
Horizontal tree variables affected nighttime LST more than vertical
tree variables with the statistical scale ranging from 90 m to 630
m. However, vertical tree structure played a more important role in
predicting daytime LST than that of horizontal tree structure, when
the statistical scale exceeded 90 m. Moreover, this study indicated the
unique effect of 2D building metrics was stronger than that of 3D
building metrics at the scales, ranging from 270 m to 810 m, for day–
night LST difference. However, vertical tree metrics alone accounted
for more variation in day–night LST difference than horizontal tree
variables across all scales (Supplementary Fig. A.6, A.7 and A.8).

By exploring the relative importance of the individual influencing
factor, the results suggested that, daytime LST was mainly governed by
PER_Build for all statistical sizes (Supplementary Table A.9). The most
important determinant of nighttime LST was influenced by statistical
size. SVF𝑏 appeared as the most determinative variable of nighttime
ST at the statistical size less than or equal to 270 m, whereas PER_Tree
layed the most vital role at the statistical sizes from 450 m to 810 m.

.4. Limitations

This research has showed the necessity of exploring the UHI effect
ith multi-dimensional and multiscale. However, further studies need

o be carried out to fully understand how building and tree affect
iurnal LST in the three-dimensional space. First, while maintaining
he same weather conditions used in this study, we would like to use
ultiple daytime and nighttime thermal images to investigate whether

ur results would hold true. Second, considering the impact of SVF𝑡
on LST, further research should be conducted to calculate precise SVF𝑡
and explore how it impacts the diurnal LST [29]. Third, previous re-
search has demonstrated that the cooling impact varied largely between
different tree species [28]. Further studies should take tree species
into account in the effect of urban tree on LST. Finally, given that
the UHI effect varied across different geographic regions (e.g., climatic
zones and arid–humid areas), similar research should be conducted to
compare with our conclusions [56].

6. Conclusions

Since urban environments are complex multi-dimensional settings,
the impacts of urban land cover on UHI should incorporate not only 2D
characteristics, but also 3D structure. Comprehensive analyses, which
aimed at distinguishing the separate and combined effects of building
and tree on diurnal LST associated with their scale-dependence in
the multi-dimensional urban environment, are certainly beneficial to
ameliorate the UHI effect. This research revealed that, despite of the
separate and combined effects of building and tree, the combination of
2D and 3D characteristics could better predict LST than features of a
single dimension for both day and night. As for the combined impacts
of building and tree across different spatial scales, combining 2D and
3D structures improved the explained LST variation by 7.3%–11.1%
and 25.3%–37.7% for day and night respectively, when compared
to using their 2D structures only. Regarding the separate impact of
building, 2D indicators affected more daytime LST than 3D indicators,
but an inverse trend was demonstrated for nighttime LST. PER_Build
affected most daytime LST at all spatial scale, but the most important
indicators of nighttime LST was more scale-dependent. With respect
to the separate impact of tree, during the day, 2D structure of tree
played a more important role in predicting LST compared to its 3D
structure, and the relative contribution of 3D structure of tree was very
limited. At night, 3D tree structure explained a larger proportion of LST
variation compared to 2D tree structure. When building and tree were
considered together to predict LST, daytime and nighttime LSTs were
primarily governed by 2D and 3D structure of building, respectively.
The most important determinant of daytime LST is PER_Build across
all statistical scales. Contrary to daytime LST, the most important
9

factor of nighttime LST was influenced by changing statistical sizes,
including SVF𝑏, PER_Tree. Scale-dependence variation, which is related
to the most important indicator of tree structure, was notable for both
daytime and nighttime LSTs. Furthermore, this research demonstrated
that separate and combined effects of building and tree on LST, except
the separate impact of tree on daytime LST, became stronger as the
statistical scale increased. Consequently, our study provided some novel
insights into the assessment of the impacts of urban land cover on UHI
to enhance the resilience of the urban environment to future climate
change. It is necessary to take 3D structure of land cover into the effect
of urbanization on UHI, and the choice of scale, which land cover and
LST interacts, was closely related to the mitigation of UHI effect.
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