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ARTICLE INFO ABSTRACT

The urban heat island (UHI) is increasingly recognized as a serious, worldwide problem because of urbanization
and climate change. Urban vegetation is capable of alleviating UHI and improving urban environment by
shading together with evapotranspiration. While the impacts of abundance and spatial configuration of vege-
tation on land surface temperature (LST) have been widely examined, very little attention has been paid to the
role of vertical structure of vegetation in regulating LST. In this study, we investigated the relationships between
horizontal/vertical structure characteristics of urban tree canopy and LST as well as diurnal divergence in
Nanjing City, China, with the help of high resolution vegetation map, Light Detection and Ranging (LiDAR) data
and various statistical analysis methods. The results indicated that composition, configuration and vertical
structure of tree canopy were all significantly related to both daytime LST and nighttime LST. Tree canopy
showed stronger influence on LST during the day than at night. Note that the contribution of composition of tree
canopy to explaining spatial heterogeneity of LST, regardless of day and night, was the highest, followed by
vertical structure and configuration. Combining composition, configuration and vertical structure of tree canopy
can take advantage of their respective advantages, and best explain variation in both daytime LST and nighttime
LST. As for the independent importance of factors affecting spatial variation of LST, percent cover of tree canopy
(PLAND), mean tree canopy height (TH_Mean), amplitude of tree canopy height (TA) and patch cohesion index
(COHESION) were the most influential during the day, while the most important variables were PLAND, max-
imum height of tree canopy (TH_Max), variance of tree canopy height (TH_SD) and COHESION at night. This
research extends our understanding of the impacts of urban trees on the UHI effect from the horizontal to three-
dimensional space. In addition, it may offer sustainable and effective strategies for urban designers and planners
to cope with increasing temperature.

Keywords:

Land surface temperature
Urban tree canopy
Vertical structure
Landscape pattern
Variable importance

1. Introduction

The world has experienced rapid population growth and urbaniza-
tion in past decades (Nations, 2014). Urbanization, as one of the most
obvious human impacts on the earth's environment, causes the re-
placement of a huge amount of natural surface with impervious surface,
produces the corresponding new coupled human-natural ecosystem,
and triggers a variety of negative influences on urban environment
(e.g., Huang and Jin, 2019). One of the most negative effects is the
widely known urban heat island (UHI) effect, which is a result of

increased anthropogenic heat and thermal capacity together with de-
creased evapotranspiration (Oke, 1973, 1982; Weng et al., 2008). The
UHI effect depicts the phenomenon that urban areas experiences higher
temperature compared to its surrounding non-urban area. The UHI ef-
fect not only adversely affects human health and well-being (Loughner
et al., 2012; O’Loughlin et al., 2012), but also leads to increased energy
consumption and air pollution (Wan et al., 2012; Grimm et al., 2008).
As a result, considerable attention has been concentrated on under-
standing the driving factors of the UHI effect, in order to ameliorate
UHI intensity, especially under the global climate warming (Wang
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et al., 2019; Buyantuyev and Wu, 2010).

Regarding the techniques to measure the temperature (e.g., Jin
et al., 2019 and 2020), studies related to the UHI effect can be mainly
grouped into two classes. Some studies were carried out to study UHI
depending on air temperature (Hamdi and Schayes, 2008), while the
other studies utilized remote sensing data to derive land surface tem-
perature (LST) for evaluating the impact of UHI (Rao, 1972; Yin et al.,
2018). Air temperature, which is always acquired from meteorological
station, has high temporal resolution, but fails to offer a synchronized
view of a large-scale area (Weng, 2009). By contrast, remote sensing
techniques can provide the spatially continuous LST, and enable to link
LST to ground cover characteristics in both lateral and vertical di-
mension. Therefore, a series of satellite and airborne remote sensing
data, such as Terra/Auga Moderate Resolution Imaging Spectro-
radiometer (MODIS), Landsat Thematic Mapper (TM)/Enhanced The-
matic Mapper (ETM+) and Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER), have been commonly employed to
associate a wide range of factors with LST (Peng et al., 2018; Li and
Zhou, 2019). In particular, the availability of high resolution imagery
provides an important opportunity to distinguish the detailed in-
formation of urban land cover classes, promoting the exploration of the
relationship between landscape pattern of land cover and the UHI ef-
fect.

Two fundamental aspects (i.e., composition and configuration) were
used to describe landscape pattern. Composition measures the features
related to the variety and relative abundance of land cover types,
whereas configuration refers to the spatial characteristics and ar-
rangement, position, or orientation of land cover types (e.g., shape
complexity, aggregation and connectivity) (McGarigal, 2014). Nu-
merous previous studies have linked land cover composition to its im-
pacts on LST, especially for vegetation. It is consistently acknowledged
that increasing vegetation cover is an very effective way to lower LST
(Weng et al., 2004; Yuan and Bauer, 2007). For example, Kong et al.
(2014) argued that a 10% increase in forest-vegetation cover can give
rise to the decrease of LST with about 0.83°C (Kong et al., 2014b). In
addition to the total quantity of vegetation, recent studies have been
undertaken to address how to optimize the landscape configuration of
vegetation to enhance its cooling effect, considering the limited space to
increase vegetation cover in the urban area (Li et al., 2012; Zheng et al.,
2014; Guo et al., 2019). A considerable number of researchers have
documented that configuration of vegetation was an important de-
terminant of LST, because configuration of vegetation not only affects
energy flows, but also has major influence on the efficiency of eva-
portranspiration (Edokossi et al., 2020; Calabia et al., 2020; Song et al.,
2014; Huang and Wang, 2019). For instance, according to the study
conducted in Sacramento, California, USA, higher edge density might
amplify UHI intensity, whereas higher mean patch size seemed to re-
duce the impacts of UHI (Zhou et al., 2017).

Despite urban vegetation has been increasingly identified as an
optimal option for alleviating the UHI effect, the research to date has
tended to rely on horizontal structure of vegetation rather than three-
dimensional characteristics of vegetation. It is important to stress that
nascent studies have demonstrated that the cooling characteristics (i.e.,
shading and evapotranspiration) was more correlated with the vertical
structure information of vegetation such as tree height and canopy
geometry, when compared to its surface (Shahidan et al., 2010, 2012).
There exist only little research that attempt to clarify the influence of
vertical structure information of vegetation on LST (Kong et al., 2016;
Gage and Cooper, 2017). A study conducted in Tampa, Florida, USA
have revealed that vegetation height played a crucial role in regulating
the daytime UHI effect. According to Davis et al. (2016), vegetation
volume was an important factor impacting nighttime temperature.
However, some vertical structure parameters of vegetation such as
amplitude of tree height have not been examined yet. Furthermore,
there is a limited knowledge exploring the relative importance of ver-
tical structure of tree canopy compared to composition and
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configuration. What is not yet clear is that the extent to which variation
of LST can be explained by combining landscape pattern and vertical
structure of vegetation. It can be summarized that there is a need to
clearly illustrate the response of vertical structure of vegetation to LST.

Using Nanjing city (China) as a case study, this study aims at a
deeper understanding of the impacts of landscape pattern and vertical
structure of tree canopy on the spatial variation of LST. The study was
conducted on both daytime and nighttime LST, given the diurnal ex-
istence of the UHI effect (Mathew et al., 2018; Zhou et al., 2016). The
key objectives of this research were presented as follows: (1) to analyze
the individual and combined impact of composition, configuration and
vertical structure of tree canopy on LST; (2) to assess the relative im-
portance of influencing factors in explaining the variation of LST as well
as diurnal contrast. This objective consisted of two parts. The first part
was to compare the relative importance of different groups of variables,
and the second part aimed to identify the dominant driving factor in
terms of individual explanatory variable. Results from this study can
offer important insights into whether three-dimensional nature or
landscape pattern of tree canopy can have greater effects on LST, pro-
viding some effective suggestions for urban designers and planners to
alleviate the influence of urbanization on the UHI.

2. Study area

Nanjing city, the capital of Jiangsu province in china, is situated in
the west part of Yangtze River Delta region, and has a total population
more than 8.2 million in 2016 (Nanjing, 2016). The city is character-
ized by the humid subtropical climate with four distinct seasons and
annual average precipitation of 1033 mm. Its annual mean temperature
is about 15.9 °C, with monthly average temperature ranging from 2.2 °C
in January to 28.6 °C in July. The elevation of Nanjing ranges from —19
to 448 m above the mean sea level, and the topography is composed of
low mountains, hills, plain and rivers (Kong et al., 2014b). The domi-
nant tree species in this region focus on Platanus acerifolia, Juiperus
chinensis and Ligustrum lucidum (Jim and Chen, 2003). Study area in this
work, which covers an area of 204km? (118°42'28" E-118°54'29"E,
32°2'40"-32°7'7" N), was confined in the central part of Nanjing for two
major reasons (Fig. 1). On one hand, since this study is devoted to re-
vealing the effect of urban tree canopy on the LST, only the urbanized
area was employed to minimize the bias arising from the rural area. On
the other hand, the availability of airborne LiDAR data was considered.

3. Materials and methods
3.1. Land surface temperature data

Landsat data, Moderate Resolution Imaging Spectroradiometer
(MODIS) LST product and ASTER images were the most widely used
remote sensing data in UHI studies (Zhou et al., 2019; Deilami et al.,
2018). It should be noted that Landsat data failed to provide nighttime
LST, and the advantages of MODIS LST may be compromised due to low
spatial resolution, although daytime LST and nighttime LST were
available from MODIS LST. Therefore, given that the key objective of
this study was to explore the impacts of horizontal and vertical struc-
tures of urban tree canopy on daytime LST and nighttime LST, ASTER
land surface kinetic temperature product (AST_08) was employed to
map daytime and nighttime LST of the study area, which is the level-2
data product at 90 m spatial resolution. AST_08 is derived from the five
thermal infrared bands, with the wavelength range of 8.125-8.475,
8.475-8.825, 8.925-9.275, 10.25-10.95, 10.95-11.65 um, respectively
(Yamaguchi et al., 1998). The absolute accuracy of AST 08 was within
about +1.5K in terms of product description (Abrams, 2000; Zheng
et al., 2014).

To make the acquisition time of ASTER LST closer to the date of
airborne LiDAR and tree canopy data, we have thoroughly searched LST
product from 2009 to 2011. In consequence, according to the quality
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Fig. 1. Study area. (a) Location of central Nanjing, Jiangsu, China; (b) and (c) are the spatial characteristic of urban tree canopy and tree canopy height, respectively.
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Fig. 2. LST images obtained from ASTER satellite data for daytime (May 1, 2011) (a) and nighttime (April 4, 2011) (b).

and availability of images, two ASTER LST scenes were used to analysze
diurnal LST: one was obtained during daytime on May 1, 2011; the
other was captured during nighttime on April 4, 2011. For the following
LST analysis, We converted surface kinetic temperature to surface
temperature in degree Celsius, which are displayed in Fig. 2.

3.2. Measures of composition and configuration of tree canopy

Urban tree canopy was extracted from the vegetation map with a 2-

m spatial resolution, which was produced by Nanjing University and
Nanjing Institute of Surveying, Mapping & Geotechnical Investigation
in 2009. Based on an object-based classification method, vegetation
map was achieved from the WorldView-2 satellite image on October 25,
2009, combined with ground reference and the WorldView-1 images
(December 06, 2018). Detailed visual inspection and manual correction
were applied to further improve the performance of vegetation map.
Result revealed that the overall accuracy of vegetation map was 95.6%.
Height information can be used as the criterion to differentiate tree/
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shrub (i.e., tree canopy) from the vegetation, since grass is closer to the
ground compared to tree/shrub. Height information of vegetation was
derived from normalized Digital Surface Model (nDSM), which can be
provided more detailed description in Section 3.3. According to the
previous studies (Chen et al., 2009; Ucar et al., 2018), a threshold value
of height was set to 0.3 in order to clearly distinguish tree/shrub objects
from vegetated area in this work. Next the urban tree canopy map was
improved by manual inspection, combined with ground reference and
high-spatial-resolution image from Google Earth in 2009. As a result,
the spatial characteristics of urban tree canopy is presented in Fig. 1(b).
Furthermore, it needs to be noted that the difference between acquisi-
tion time of ASTER LST and tree canopy and LiDAR data was ap-
proximately two years. We assumed that limited change was observed
as the patches of tree canopy has been relatively stable.

Many previous research have demonstrated the correlation between
landscape pattern of land cover types and LST (Weng et al., 2007; Kong
et al., 2014a; Zheng et al., 2014; Masoudi and Tan, 2019). Landscape
metrics to quantify landscape pattern can be categorized into two main
types, namely landscape composition (e.g., proportional abundance of
each type) and landscape configuration (spatial arrangement of land
cover types). A set of class-level landscape metrics were used to explain
the variation of LST, including percent cover of tree canopy (PLAND)
(Kong et al., 2014a; Zhou et al., 2017; Chen and Yu, 2017), patch
density (PD) (Liu and Weng, 2009; Connors et al., 2013), edge density
(ED) (Li et al., 2011; Peng et al., 2018), mean patch shape index
(SHAPE_MN) (Li and Zhou, 2019; Li et al., 2012) and patch cohesion
index (COHESION) (Huang and Wang, 2019). The first metric is the
measure of landscape composition, whereas the latter four metrics are
indicators of landscape configuration. These landscape metrics were
chosen according to the following principles: (1) commonly used in
previous research; (2) applicability and (3) reasonable theoretical be-
havior (Chen et al., 2014; Zhou et al., 2017; Fan et al., 2019).

In the analysis, the entire urban tree canopy of Nanjing was divided
into 90 m X 90 m grids. All the selected metrics in class-level for each
grid were computed based on the map of urban tree canopy, using the
Fragstats 4.2 with the setting of 8 cell neighborhood rule. As far as
Fragstats 4.2 is concerned, it is a spatial pattern analysis program, used
for quantifying the composition and configuration of landscapes.
Table 1 presents the definitions and formulas for landscape metrics
adopted in this research.

3.3. Quantification of vertical structures regarding to tree canopy

The vertical structures of urban tree canopy were acquired by
summarizing the tree canopy map as well as height information of trees
into the same spatial resolution of the ASTER LST (90 m). The height of
tree canopy was extracted with the aid of airborne laser scanning data,
which was recorded by Optech ALTM Gemini Scanner on April 21 and
22, 2009 with the mean point density of 4.1 point/m? and up to four

Table 1
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returns. We employed 2D grid cell with 2.0 m spatial resolution to
process the LiDAR point cloud data, hence, 16.4 points was included for
each pixel. First, identified overlap and noisy points were removed from
the original LiDAR data, and then the point cloud data was subdivided
into ground and no-ground points. Secondly, raster layer for height of
bare earth surface (Digital Elevation Model (DEM)) was yielded from a
triangular irregular network of the ground points. By computing the
maximum height of all points, including ground and no-ground points,
per pixel, a Digital Surface Model (DSM) was created. Finally, sub-
traction of DEM from the acquired DSM generated the normalized
Digital Surface Model (nDSM), which denotes the height of above-
ground surface objects.

The achieved tree canopy map, DSM and nDSM enabled the ex-
traction of 3D characteristics of urban tree canopy. An overview of
metrics adopted in this research, along with mathematical equations, is
shown in Table 2. As can be seen from the table above, 6 vertical
structure variables were calculated. To better understand how vertical
structure responses to daytime LST and nighttime LST, all factors were
summarized on the basis of ASTER pixel of 90 m X 90 m. The selection
of these variables was not confined to the metrics that have shown
significant impact on LST (e.g., TH_Mean, TH_SD) (Yu et al., 2018; Gage
and Cooper, 2017). Some indicators, which may have potential influ-
ences on LST but there is lack of adequate exploration linking such
indicators with LST, were also considered.

3.4. Statistical analysis

To explore how urban tree canopy influences daytime LST and
nighttime LST, diurnal LST was used as the response variable in this
study, while the explanatory variables were divided into three groups:
composition of tree canopy, configuration of tree canopy and vertical
structure of tree canopy.

A number of statistical techniques were conducted. First, in order to
statistically eliminate the impacts of other influencing factors, we ap-
plied a partial correlation analysis to examine the degree of correlation
between diurnal LST and predictor variables, after controlling for the
mutual effect among them (Peng et al., 2013; Zhang and Liang, 2018).
For instance, when we measured the linkage between diurnal LST and
composition, configuration and vertical structure should be controlled
for.

Next, seven stepwise multiple linear regression models were built
and compared, and the diurnal LST can be expressed as a function of:
(1) composition, (2) configuration, (3) vertical structure, (4) composi-
tion + configuration, (5) composition + vertical structure, (6) config-
uration + vertical structure and (7) composition + configura-
tion + vertical structure. Explanatory factors with statistically
significant (p < 0.05) were chosen for each regression model. Moreover,
the change in R? was evaluated to investigate if the explained variation
can be improved significantly by adding driving factors to base

List of landscape metrics selected in this research to assess the composition and configuration of urban tree canopy (McGarigal, 2002).

Categories Metrics (abbreviation) Definition Formulas (unit)
Composition Percent cover of tree canopy Proportional abundance of tree canopy within the spatial unit. 2};1 aj
(PLAND) PLAND; = " X 100 (%)
Configuration  Patch density (PD) Density of tree canopy patches within the spatial unit. PD; = 2 x 10, 000 X 100 (n/km?)
A )
Edge density (ED) The sum of edge lengths of tree canopy patches per hectare within the i1

spatial unit.
Mean patch shape index

(SHAPE_MN) within the spatial unit.
Patch cohesion index
(COHESION) the spatial unit.

The average value of shape index in terms of tree canopy patches

Measures the physical connectedness for patches of tree canopy within

ED; = % 10, 000 (m/ha)

A
n bj
=135

DY
- x[l—;]xloo
ijlpj\‘;aj N4

SHAPE_MN, = 1%,

COHESION; = [1

A = area of the spatial unit; » = number of tree canopy patches within the spatial unit; ¢; = lengths of edge segments of tree canopy patch j; P, = perimeter of tree
canopy patch j; a; = area of tree canopy patch j; P} = perimeter of tree canopy j regarding the number of cell surfaces; af = area of tree canopy patch j with respect

to number of cells; Z = total number of cells within the spatial unit.
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Table 2
Information on factors used to quantify the vertical structure of urban tree canopy in this study.
Metrics (abbreviation) Description Equations
Mean tree height (TH_Mean) Mean of LiDAR-derived tree canopy height within an analysis grid TH M SR_q THk
_Mean; = =“=——
n

Maximum height of tree canopy
(TH_Max)
Variance of tree canopy height (TH_SD)

Amplitude of tree canopy height (TA)

Maximum of LiDAR-derived tree canopy height within an analysis grid.

Standard deviation of LiDAR-derived tree canopy height within an analysis grid.

The difference between maximum and minimum of LiDAR-derived tree canopy height with

TH_Max; = Max(THy), j =1, 2, 3, ..,n

1(THk —TH_ mcan,‘)2

TH_SD;
TA; = hmax — hmin

the addition of ground elevation within an analysis grid.

Normalized tree canopy height
variance (NTH_SD)

The ratio between variance and mean in terms of LiDAR-derived tree canopy height within an
analysis grid, a measure of relative variance of tree canopy height.

TH_SD;

NTH_SD; = TH_Mean;

THy = tree canopy height computed for cell k within the analysis unit i; yq. and hy,;, denote the maximum and minimum height of tree canopy within in the analysis

unit i in terms of DSM, respectively.

regression models (Weinberg and Abramowitz, 2016; Li et al., 2016).

Finally, we implemented all-subsets regression to select the best
subset of predictor variables. This can be attributed to the limitation of
stepwise multiple linear regression that it fails to consider all potential
combinations of the predictor variables, although an optimal regression
model is likely to be gained. All-subset regression was implemented
using “leaps” package in R, and the adjusted R? and Schwartz's Bayesian
information criterion (BIC) (Schwarz et al., 1978) were combined to
choose the optimal model. When we achieved the best subset of factors,
we shed light on the relative importance of driving factors to diurnal
LST, with the use of variation partitioning and hierarchical partitioning
analysis. Note that variation partitioning analysis was used to identify
the relative variations in diurnal LST explained by these three groups of
driving factors, while hierarchical partitioning analysis was employed
to quantify the relative magnitude of individual predictor variables in
explaining diurnal LST variation. In this study, variation partitioning
consists in apportioning the spatial variation of diurnal LST among
composition, configuration and vertical structure. With three types of
explanatory variables, the variation of diurnal LST were summarized
into four main components: (1) the fractions independently explained
by each type of explanatory variables, (2) combined fractions between
two types of explanatory variables, (3) the joint fraction between all
three types of explanatory variables, and (4) the unexplained variation.
They were executed using the “vegan” and “hier.part” packages in
statistical software R, which is widely employed among data miners for
data analysis.

4. Results and analysis

4.1. The spatial and vertical characteristics of tree canopy and diurnal LST
pattern

Tree canopy area was 82.4 km?, which comprised approximately
40.3% of the study area. The mean percent cover of tree canopy
(PLAND) was 44.04%, ranging from 0.05% to 100%, and varied largely
in space among the analysis units in the study area (Table 3). What can
clearly be seen from the table, large variations and ranges were pre-
sented for patch density and edge density of tree canopy, while mean
patch shape index and patch cohesion index of tree canopy showed
relatively low variation.

As regards vertical structure of tree canopy, the overall average
values of mean and maximum tree canopy height were 7.39 and
21.44 m, respectively. Locations with higher tree canopy height was
mostly in the eastern portion of the study area, where the Purple
Mountain is located (Fig. 1(c)). The mean value of variance of tree
canopy height was 4.55 m, whereas the mean value of maximum height
of tree canopy was 21.44 m. When the ground elevation was considered
to vertical characteristics of tree canopy (i.e., TA), TA had higher values
of mean and variation compared to the other vertical structure vari-
ables.

Table 3
Descriptive statistics of diurnal LST and its driving factors.
Categories Variables Mean SD Minimum  Maximum
LST Daytime LST 30.25 3.00 21.65 41.95
Nighttime LST ~ 9.00 1.67 1.25 15.25
Composition PLAND 44.04 29.59 0.05 100.00
Configuration PD 986.22 766.27 123.46 8271.60
ED 871.33 534.32  0.00 3627.16
SHAPE_MN 1.58 0.46 1.00 7.09
COHESION 93.72 7.73 0.00 100.00
Vertical Structure =~ TH_Max 21.44 7.97 0.30 43.50
TH_Mean 7.39 4.46 0.30 39.78
TH_SD 4.55 1.96 0.00 18.41
TA 24.77 10.68 0.00 88.20
NTH_SD 0.77 0.38 0.00 3.61

Land surface temperature exhibited significant difference between
daytime and nighttime (Fig. 2). The LST during the day ranged from
21.65 to 41.95°C, with an average of 30.25°C and standard deviation
of 3.0°C. On the other hand, the mean and standard deviation of LST
during the night were 9.0 and 1.67 °C, respectively, ranging from 1.25
to 15.25 °C. Looking at the Figs. 1(b) and 2, it is apparent that high LST
during the night was concentrated in the central region, while the high
LST during the day was mainly distributed in the southern and northern
regions. Further investigation argued that the higher the percent of tree
canopy cover, the lower the LST for both daytime and nighttime.

4.2. Correlation between landscape pattern and vertical structure of trees
and diurnal LST

We first examined the apparent response of percent cover of tree
canopy to diurnal LST, with partial correlation analysis to remove the
influences of configuration and vertical structure. Percent cover of tree
canopy was significantly and negatively associated with both daytime
LST and nighttime LST, implying that the much higher the percent
cover of tree canopy, the lower the LST (Table 4).

When bivariate relationships between configuration metrics and
diurnal LST were controlled with partial correlation analysis for influ-
ences of composition and vertical structure, ED, SHAPE MN and
COHESION were positively correlated with daytime LST (Table 4).
However, PD was no longer correlated to daytime LST as compared to
the result provided by Pearson correlation. During the night, PD and ED
were negatively correlated with nighttime LST, whereas the remaining
metrics showed positive associations with nighttime LST.

In the case of vertical structure variables, the Pearson correlation
analysis revealed that all 5 metrics were significantly correlated with
daytime LST (Table 5). When the impacts of composition and config-
uration of tree canopy were removed in the partial correlation, the
relationship of all vertical structure metrics remained significant with
daytime LST. The correlation between NTH_SD and daytime LST was
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Table 4

Correlation coefficients between landscape pattern of tree canopy and diurnal
LST. The results of partial correlation analysis are marked in bold and italic. As
for PLAND, configuration and vertical structure of tree canopy were the control
variables. PLAND and vertical structure were the control variables regarding
the configuration metrics.

LST PLAND PD ED SHAPE_MN COHESION
Daytime LST —0.002 0.091

0.359%* 0.330
Nighttime LST —0.147** —0.048*

0.079%* 0.005

* Denotes the significance of correlation at 0.05 level (two-tailed).
** Denotes the significance of correlation at 0.01 level (two-tailed).

Table 5
Correlations of diurnal LST with vertical structure of tree canopy. The bold and
italic rows are the partial correlation coefficients between vertical structure and
diurnal LST when controlling for the composition and configuration of tree
canopy.

LST TH_Max TH_Mean TH_SD TA NTH_SD

Daytime LST —0.079 —0.181** —0.053 —0.165** 0.085**

* —0.445** 0.391**

Nighttime LST 0.209+* —0.029**
—0.003 0.089*

** Denotes the significance of correlation at 0.01 level (two-tailed).

positive but negative for the others. However, it is interesting that, as
for most of metrics, their partial correlation coefficients were smaller
than the corresponding Pearson correlation coefficients, indicating the
decreasing of the strength of partial correlation.

Another important finding is that the relationship between TH_SD
and daytime LST has changed from positive to negative after con-
sidering the influence of landscape pattern of tree canopy. By contrast,
the results of Pearson correlation analysis showed that all vertical
structure metrics except for TA were significantly correlated with
nighttime LST (Fig. 5). On the other hand, after controlling for the in-
fluences of landscape pattern of tree canopy, all metrics were sig-
nificantly related to nighttime LST, and four out of five metrics exerted
much stronger effects on nighttime LST independent of landscape pat-
tern. Furthermore, TH_Mean, TA and NTH_SD showed inverse trends.

4.3. Individual and combined effects of composition, configuration and
vertical structure of tree canopy on LST

To explore the relationship between diurnal LST and composition,
configuration and vertical structure of tree canopy, we developed seven
stepwise multiple linear regression models, which are shown in Table 6
and 7. The first three regression models attempted to clarify the effect
of each group of factors on diurnal LST. In contrast, the rest of re-
gression models were aimed to gain the understanding of what level of

Table 6
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explanatory power of diurnal LST can be acquired using the combina-
tion of different groups of factors.

During the day, models accounted for between 31% and 54% of the
variation in LST (Table 6). The best model was achieved when jointly
considering composition, configuration and vertical structure as pre-
dictor variables. Configuration as a lone variables predicted the lowest
amount of variation (31%) in daytime LST. The model with only ver-
tical structure variables generated higher explanatory power (R?),
compared to models based on only composition or configuration vari-
ables.

The incremental R? test implied that all added variables can give
rise to improvement in explaining the daytime LST variation sig-
nificantly (p < 0.001) (Table 8). Closer inspection of this table showed
that composition and vertical structure had much stronger relationships
with daytime LST than did configuration. It is clearly supported by the
larger R? increment gained by models with the addition of composition
or vertical structure variables and relatively low increment of R?> ob-
tained by models when configuration variables were added.

In terms of land surface temperature during the night, the model
with only configuration variables merely explained 4% of variation in
LST (Table 7). By contrast, the three groups of predictor variables
considered together accounted for the highest portion (23%) of night-
time LST's spatial variation. Adding vertical structure variables, such as
mean tree canopy height and amplitude of tree canopy height, to the
composition model and configuration model led to improvements of the
mean prediction by 6.6% and 10.3%, respectively. Similar conclusion
as like in the daytime LST can be drawn that all the addition of vari-
ables significantly improved the R?, and composition and vertical
structure had much stronger association with nighttime LST compared
to configuration.

4.4. Dominant influencing factors for diurnal LST

4.4.1. Choosing the optimal model

When using the leap package in R to run all-subset regression, the
parameter nbest was set to 1, suggesting that only one best model can
be recorded for each size of independent variables. All the influencing
factors were input to create all-subset regression model, as a result, ten
regression models with different number of influencing factors were
constructed. As can be seen from Fig. 3, there were some models with
the same and highest adjusted R? for both daytime and nighttime LST.
Therefore, with the aim of determining the best model, BIC was utilized
as an another measurement, and a smaller BIC corresponded to a better
regression model.

From the data in Fig. 3(a), we can conclude that, during the day, the
model, whose adjust R?> was 0.54 and the BIC was —17,611.25, was
adopted as the optimal model. All explanatory variables except for
SHAPE MN entered the optimal model. Seven driving factors were
contained in the best model for nighttime LST, with 0.23 and —6021.32
for adjust R? and BIC value, respectively (Fig. 3(b)). These factors were
composed of PLAND, two configuration variables (PD and COHESION),

Summary results, including regression coefficients and determination coefficients (R?), for seven stepwise multiple linear regressions by using daytime LST as the

response variable.

Model Composition Configuration Vertical Structure R2
PLAND PD ED SHAPE_MN COHESION TH_Max TH_Mean TH_SD TA NTH_SD

Model 1 —0.066 0.43
Model 2 4.91E-04 0.001 1.142 —0.159 0.31
Model 3 0.121 —0.440 0.478 —0.142 —1.585 0.45
Model 4 —0.067 —3.03E-04 0.001 0.453 0.50
Model 5 —0.038 0.072 —0.277 0.259 —0.081 —0.828 0.53
Model 6 2.58E704 —0.052 0.111 —0.397 0.421 —0.124 —1.411 0.48
Model 7 —0.046 —1.94E-04 5.63E~04 0.013 0.060 —0.226 0.199 —0.070 —0.764 0.54
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Table 7
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Summary results, including regression coefficients and determination coefficients (R?), for seven stepwise multiple linear regressions by using nighttime LST as the

response variable.

Model Composition Configuration Vertical Structure R2
PLAND PD ED SHAPE_MN COHESION TH_Max TH_Mean TH_SD TA NTH_SD
Model 1 —0.022 0.15
Model 2 5.20E~05 0.200 —0.043 0.04
Model 3 0.075 —0.122 0.207 —0.037 —1.036 0.12
Model 4 —0.031 —3.37E-04 —0.145 0.028 0.17
Model 5 —0.024 0.046 —0.021 0.070 —0.568 0.21
Model 6 —6.70E-05 —2.57E-04 —0.031 0.075 —0.128 0.212 —0.031 —0.908 0.15
Model 7 —0.031 —3.53E704 6.90E~05 0.015 0.041 —0.016 0.066 0.004 —0.475 0.23
Table 8

The significance test of incremental R?: the increase in R? when additional driving factors were added to base models.

Base models Base models with the additional driving factors

Composition + Configuration

Composition + VS

Configuration + VS Composition + Configuration + VS

Daytime Nighttime Daytime Nighttime Daytime Nighttime Daytime Nighttime
Composition 0.064" 0.024" 0.097¢ 0.066" 0.103* 0.086"
Configuration 0.19" 0.129" 0.17¢ 0.103" 0.229" 0.1917
Vertical Structure (VS) 0.076" 0.095" 0.023" 0.029" 0.082" 0.115"
Composition + Configuration 0.039" 0.062"
Composition + VS 0.006" 0.020"
Configuration + VS 0.056" 0.086"

@ Implies the statistical significance of increment in R? at & = 0.001 with the F-test.

and four vertical structure variables, including TH_Max, TH_Mean,
TH_SD and NTH_SD.

4.4.2. Relative importance of landscape pattern and vertical structure of
tree canopy for LST

Based on the explanatory variables that survived during the optimal
models, the relative contributions of landscape pattern and vertical
structure of tree canopy were assessed through the use of variation
partitioning and hierarchical partitioning. First, with respect to the
results of variation partitioning for daytime LST (Fig. 4(a)), the joint of
all three types of influencing factors contributed to a considerable
amount of variation (21.37%), which accounted for approximately 40%
of the explained variation. The variations of daytime LST independently
explained by composition and vertical structure were 5.95% and
4.19%, respectively. However, the configuration uniquely captured
very limited additional explanation of variation (0.6%) related to
daytime LST. A high proportion of LST variation (14.26%) during the
day can be jointly explained by composition and vertical structure,
whereas the joint impact of composition and configuration made very
limited contribution.

The results of variation partitioning for nighttime LST, as shown in
Fig. 4(b), reported that the unique effects of composition and vertical
structure variables dominated the LST variation during the night
(10.07% and 6.31%, respectively).What is important for us to recognize
here, is that not only the independent contribution of configuration, but
also the joint effects of configuration and composition or configuration
and vertical structure was found to be relatively weak. Variation of
nighttime LST explained by the joint of the three types of variables was
negative, signifying a few of the correlations among explanatory vari-
ables have opposite signs or the occurrence of suppression (Pedzahur,
1997).

In addition to quantifying the relative importance of each group of
influencing factors, the contribution of individual explanatory variable
to diurnal LST was also explored. Hierarchical partitioning analysis
suggested that PLAND appeared the most important variable in ac-
counting for the LST variation during the day (Fig. 5(a)). PD, ED and

COHESION independently contributed 4.98%, 6.11% and 7.42% of the
variation of daytime LST, respectively. In the case of vertical structure,
TH_Mean and TA made larger independent contribution rate to the LST
variation (16.59% and 14.26%, respectively), followed by NTH_SD
(7.07%), TH_STD (3.14%), and TH_Max (2.86%).

During the night, the highest independent contribution rate
(56.23%) to the LST variation was assigned to PLAND (Fig. 5(b)).
COHESION made much larger contribution rate (9.24%) to nighttime
LST variation than did PD (4.38%). TH_Max and TH_STD had the re-
latively higher independent contribution rate of LST variation (12.31%
and 12.50%, respectively), while the contributions of NTH_STD and
TH_Mean to nighttime LST were very limited.

5. Discussion

5.1. Diurnal divergence in the sensitivity of landscape pattern and vertical
structure of tree canopy to LST

Akin to the results in many previous studies (Huang and Wang,
2019; Zhou et al., 2017; Peng et al., 2014), our results confirmed that
percent cover of tree canopy played the most important role in cooling
LST, regardless of day and night (Fig. 4 and 5). Another important
finding was that percent cover of tree canopy showed stronger impact
on LST during the day than at night (Table 4, 6 and 7). Such an phe-
nomenon can be explained from the point of view of cooling mechanism
with regard to tree canopy. It is acknowledged that the general cooling
effect of tree canopy on LST resulted from shading and evapo-
transpiration, which could convert solar radiation to latent heat flux
(Shahidan et al., 2012; Lambers et al., 2008; Chen et al., 2019). The
reduced impact of tree canopy on LST at nighttime could be attributed
to the combined effects of the following two main aspects. On one hand,
during the night, evapotranspiration effect of tree canopy tended to
reduce as photosynthesis shut down. On the other hand, it is likely to be
explained in part by the fact that tree canopy hindered the loss of
longwave radiation together with below-canopy turbulence (Ziter et al.,
2019; Konarska et al., 2016).
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Fig. 3. All the best subset regression models for (a) daytime LST and (b) nighttime LST.

Composition Configuration

Composition Configuration

Vertical Structure Vertical Structure

Residual = 46.49 Resudual = 76.82

(a) Daytime LST (b) Nighttime LST

Fig. 4. The unique and joint impacts of composition, configuration and vertical structure of trees on the (a) daytime LST and (b) nighttime LST.
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Fig. 5. The relative contribution of individual explanatory variable to (a) daytime LST and (b) nighttime LST.

In this work, we also affirmed that most of configuration metrics
related to tree canopy were shown to have significant impact on both
daytime LST and nighttime LST, after controlling for the impact of
composition and vertical structure of tree canopy. What stands out in
the Table 4 is that edge density was positively associated with daytime
LST, but the inverse trend was presented for nighttime LST. As far as
edge density is concerned, the increase of edge density and total patch
edges tended to result in more shade produced by tree canopy, and
improved the energy exchange between trees and surrounding ground
surfaces such as impervious surface. Consequently, higher edge density
always gave rise to lower LST in terms of shading effect. By contrast,
many prior studies have proven that larger patches can lead to much
stronger evapotranspiration. However, in the light of a fixed area of tree
canopy cover, higher edge density suggested that patches of tree canopy
was relatively more fragmented. It means that the increase in edge
density perhaps reduced the evaportanspiration, which is accompanied
with higher LST (Zhou et al., 2017; Cao et al., 2010). According the
aforementioned information, we can conclude that, during the day, the
change in LST was determined by the joint effects of shading and
transpiration. Therefore, the reason why edge density was positively
correlated with daytime LST is that the reduction of evapotranspiration
provided by increased edge density was over increase in shading. One
possible explanation for the phenomenon, which increased edge density
can lead to lower nighttime LST, was that although increasing edge
density maybe tended to reduce evapotranspiration efficiency, it can
also increase outgoing radiation (Holmer et al., 2013).

Additionally, this study demonstrated that configuration metrics of
tree canopy were weaker explanatory variables of diurnal LST, when
compared to composition and vertical structure measures of tree ca-
nopy. However, it is worth noting that, similar to some previous work
(Li et al., 2016; Zhou et al., 2011), combining configuration and com-
position (vertical structure) improved significantly the explanation of
variation in LST, regardless of day and night, but only limited.

By exploring the influences of trees on LST with different spatial
resolutions, which were derived from different satellite sensors, our
results were in keeping with the findings of previous studies (Zhou
et al., 2017; Zheng et al., 2014). For example, Zhou et al. (2017) found
that percent cover of trees played a more important role in predicting
LST than that of spatial configuration of trees, using the Landsat-5
Thematic Mapper with a spatial resolution of 120 m to derived LST
(Zhou et al., 2017). Nastran et al. (2019) demonstrated that tree con-
figuration and composition were statistically significantly correlated
with UHI intensity under the condition of LST derived from MODIS
(Nastran et al., 2019). In terms of the influences of the spatial resolution
of urban tree canopy map on the relationship between trees and LST,
conclusions obtained by this study supported previous research that
composition and configuration of tree canopy can be both of great
importance to mitigate the UHI effect, although there are some differ-
ences in the light of the relationships between configuration metrics of

tree canopy and LST (Kong et al., 2014a; Fan et al., 2015).

Although the impact of vegetation on LST has been widely explored
(Kong et al., 2014a; Weng et al., 2004; Yuan and Bauer, 2007), the
response of vertical structure of tree canopy to LST, especially for
diurnal contrast, is not fully understood. Our results indicated that all
vertical structure measures in this study had significant influences on
daytime LST and nighttime LST, when the influences of landscape
pattern was removed. Note that the inverse trend between daytime LST
and nighttime LST was observed for all vertical structure measures
(Table 5). For example, we found that daytime LST decreased with
increasing mean tree height, while nighttime LST tended to decrease as
mean tree height increases. The contribution of vertical structure to
affecting LST was close to composition, but much higher than config-
uration. We thought that vertical structure and landscape pattern can
provide complementary information, which might explain why the in-
tegration of these influencing factors can explain more LST variation
(Gage and Cooper, 2017; Davis et al., 2016; Yu et al., 2018). Regarding
the independent effects of vertical structure variables, TH_Mean and TA
played more important roles in explaining LST during the day, while
TH_Max and TH_SD showed stronger impacts on nighttime LST.

5.2. Implications for management and urban planning

It is well known that vegetation, especially for tree canopy, played a
vital role in mitigating urban heat island (Weng et al., 2004; Jiao et al.,
2017; Zhou et al., 2017). Up to now, most previous studies have tended
to focus on exploring how the abundance and spatial configuration of
tree canopy affected the magnitude of LST. However, the contribution
of vertical structure characteristics of tree canopy to impacting LST was
less understood. The outcomes of this study can provide some in-
novative insights into urban planning and management.

Our results demonstrated that not only the abundance and config-
uration of tree canopy but also vertical structure of tree canopy can
significantly influence LST. Though the abundance of tree canopy
showed stronger impact on LST, special attention should be focused on
the optimizations of configuration and vertical structure of tree canopy
given the limited available land space for planting trees. As for spatial
configuration of tree canopy, the stronger positive relationship between
patch cohesion index (COHSEION) and LST suggested that a decrease in
degree of tree canopy connectivity could produce cooling effect. It can
be done by interspersing tree canopy into urban area to cool the city
most efficiently, which is in line with some prior studies (Zhou et al.,
2011). Apart from exploring where the trees should be planted, this
study also revealed that vertical structure of trees should be considered
to maximize the cooling effect of tree canopy. We excepted that the
aforementioned results have important implications for urban planners
and designers.
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5.3. Limitations

Although we have revealed the impacts of landscape pattern and
vertical structure of tree canopy on diurnal LST in this work, a number
of limitations need to be considered. Firstly, ASTER LST used in this
work was acquired in 2011, but the acquisition time of tree canopy and
airborne LiDAR data was 2009. The time difference between these data
maybe have some inevitable impacts on the results obtained in this
study. As a result, in order to make our study more persuasive, it is an
urgent need to compare the conclusions achieved in similar research in
the future, using the data with approximately same acquisition date.
Secondly, using only one daytime/nighttime LST we were capable of
thoroughly unraveling how horizontal and vertical tree canopy struc-
ture influence urban thermal environment. However, whether these
finding can hold true should be further explored in other cities with
different climatic conditions, using multiple daytime and nighttime
thermal images. Thirdly, we were not devoting to investigating the
seasonal contrast in the relationship between LST and tree canopy in
terms of lateral and vertical structure information. However, given that
the influences of vegetation phenology on LST, the association between
vegetation and LST varied with seasons (Fan et al., 2015; Zhou et al.,
2014). Hence, future research might explore the seasonal impacts of
tree canopy on LST to complement this work. Finally, some other ver-
tical structure metrics such as sky view factor and canopy density may
play a role but not covered in this study. Therefore, future research
should be undertaken to give a better understanding of the influence of
vertical structure of tree canopy on LST.

6. Conclusion

A comprehensive understanding of the cooling effect of tree canopy
could extend our knowledge on how to ameliorate city's resilience to
future climate change. The uniqueness of this study lies in the ex-
ploration of characteristics of tree canopy, including landscape pattern
and vertical structure, on the diurnal LST variation. The findings of this
work showed that tree canopy was able to explain greater amount of
variation in daytime LST than in nighttime LST. Composition of tree
canopy was the most important predictor in reducing LST regardless of
day and night, followed by vertical structure and configuration. Note
that a combination of composition, configuration and vertical structure
of tree canopy can provide complementary information, and best ex-
plain the variation of LST. Furthermore, according to the contribution
of individual influencing factor to LST, we found that the dominant
explanatory variables were PLAND, TH_Mean, TA and COHESION
during the day. By contrast, the major determinants of LST were
PLAND, TH_Max, TH_SD and COHESION at night. Our results suggested
that, in order to mostly effectively alleviate the UHI effect, we should
not only aim at the enlargement of tree canopy area and the optimi-
zation of spatial configuration of tree canopy, but should also take the
vertical structure of tree canopy into account.
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