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Calibration and Evaluation of Precipitable Water
Vapor From MODIS Infrared

Observations at Night
Liang Chang, Member, IEEE, Guoping Gao, Shuanggen Jin, Xiufeng He, Ruya Xiao, and Lixin Guo

Abstract—Water vapor is one of the most variable atmospheric
constituents. Knowledge of both the spatial and temporal varia-
tions of atmospheric water vapor is very important in forecasting
regional weather and understanding the global climate system.
The Moderate Resolution Imaging Spectroradiometer (MODIS)
is the first space instrument to obtain precipitable water vapor
(PWV) with near-infrared (nIR) bands and the traditional IR
bands, which provides an opportunity to monitor PWV with wide
coverage during both daytime and nighttime. However, the accu-
racy of PWV measurements obtained with IR bands is much lower
than that with nIR bands. Moreover, seldom have studies been
devoted to the calibrations of MODIS IR PWV. In this paper, the
accuracy of MODIS IR water vapor product during the nighttime
is assessed by ERA-Interim data, Global Positioning System, and
radiosonde observations. Results reveal that the performance of
MODIS IR water vapor product is much poorer than that from
the other observations, and the MODIS IR PWV needs to be
calibrated. As such, we propose a differential linear calibration
model (DLCM) to calibrate the MODIS IR water vapor product
during the nighttime. Case studies under both dry and moist
atmosphere in midlatitude and equatorial regions are used to
test and assess the performance of the DLCM. Results show that
the DLCM can effectively enhance the accuracy of MODIS IR
retrievals at nighttime. Furthermore, while the traditional least
square model may over calibrate the MODIS IR PWV measure-
ments occasionally, the DLCM can avoid that defect successfully.

Index Terms—Calibration model, infrared (IR), Moderate Res-
olution Imaging Spectroradiometer (MODIS), night, water vapor.

I. INTRODUCTION

A TMOSPHERIC water vapor is the most important green-
house gas and plays a crucial role in understanding and
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predicting the Earth’s climate change. The phase variability of
water vapor in time and space over a large range scale affects
the vertical stability of the atmosphere, the evolution of the
weather, and the energy balance of the global climate system
[1]. Precipitable water vapor (PWV), which is also referred to as
total column or integrated water vapor, is the total water vapor
contained in an air column from the Earth’s surface to the top
of the atmosphere, and it is a good indicator of the variability of
water vapor in the lower troposphere and related processes [2].

The traditional radiosonde technique has long been the pri-
mary in situ observing system for detecting global atmospheric
water vapor, and it also represents an increasingly valuable
resource for studies of climate change [3]. However, global
radiosonde observations are only available twice a day, and they
often contain systematic biases [4] and spurious changes [5].
In addition, the use of radiosonde is limited due to their high
operational costs and their poor coverage over oceans and in
the southern hemisphere [6].

Global Positioning System (GPS) is another practical tool for
measuring PWV on a global basis, which uses the delay in radio
signals due to the permanent dipole moment of atmospheric
water vapor molecules to infer PWV [7]. The advantages of
the GPS-derived PWV involve continuous measurements in all
weather conditions, high accuracy (at the level of 1–2 mm),
long-term stability, and low cost [8]. Unfortunately, similar with
radiosonde observations, GPS data are available usually only
over land.

Spaceborne monitoring is strictly the only effective tech-
nique to evaluate water vapor distribution on a global scale.
Currently, a number of sensors onboard satellite platforms have
been implemented to observe water vapor amount, such as the
Moderate Resolution Imaging Spectroradiometer (MODIS) [9]
on Terra and Aqua platforms, the Medium Resolution Imaging
Spectrometer (MERIS) [10] on Environmental Satellite plat-
form, the Atmospheric Infrared Sounder (AIRS) [11] onboard
Aqua, the Infrared Atmospheric Sounding Interferometer [12]
onboard MetOp, the Microwave Radiometers (MWR) [13]
onboard TOPEX/Poseidon and Jason, the Tropical Rainfall
Measuring Mission’s Microwave Imager (TMI) [14], and the re-
cently launched Global Precipitation Measurement Microwave
Imager [14]. The space-based instruments that detect infrared
(IR) or (and) near-infrared (nIR) frequencies can measure mois-
ture over both land and ocean regions, but only information
collected under cloud-free conditions can be used, as the IR
and nIR measurements are sensitive to the presence of clouds
in the field of view. Furthermore, the IR retrievals (e.g., AIRS
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and MODIS) can be obtained during both the daytime and
the nighttime, whereas the nIR retrievals (e.g., MERIS) are
available in the daytime only. In this paper, we focus on the
need for monitoring water vapor during the night, when water
vapor transportation from the atmosphere to the ground surface
makes important contributions to the water budget, particularly
in arid and semiarid regions.

MODIS is the first space instrument that uses both nIR and IR
bands to obtain global PWV distribution. However, comparing
with the nIR water vapor retrievals, the accuracy of IR retrievals
was much poorer. Thus, most of the studies were focused on the
calibration and applications of nIR water vapor measurements
(e.g., [6], [15], and [16]), whereas only a few studies have con-
tributed to the analyses of IR retrievals at night (e.g., [17]–[19]),
and seldom have works been devoted to the calibration of
MODIS PWV at IR band during the nighttime. In this paper,
we present a differential linear calibration model (DLCM) to
calibrate the MODIS IR water vapor product at night. The
accuracy of the calibration will be assessed with ERA-Interim
data and GPS observations.

This paper is organized as follows. In Section II, the ac-
curacy of MODIS IR water vapor product was analyzed via
comparisons with PWV measurements from ERA-Interim data,
GPS, and radiosonde observations. Calibrations of MODIS IR
water vapor data with the proposed DLCM were discussed in
Section III. Case studies of MODIS IR water vapor product
calibrations and their assessments are presented in Section IV
at middle- and low-altitude regions. Finally, some conclusions
are addressed in Section V.

II. ACCURACY ANALYSIS OF MODIS IR PWV PRODUCT

A. MODIS IR Water Vapor Data

The operational MODIS IR algorithm, which is implemented
by a statistical regression algorithm together with an option
of a subsequent nonlinear physical retrieval, is used for re-
trieving vertical temperature and moisture profiles, ozone pro-
files, PWV, and several atmospheric stability indices [17]. The
MODIS IR water vapor retrievals are derived from band 24 to
band 36 (between 4.47 and 14.24 μm), excluding band 26, and
performed using clear-sky radiances measured within a 5×5
field of view (approximately 5-km resolution) over land and
ocean for both day and night. The PWV measurements from
the IR bands are generated as one component of the product
MOD07 and simply added to product MOD05 for convenience.

In this paper, the MODIS level-2 water vapor and cloud mask
product at IR band are obtained from the National Aeronautics
and Space Administration (NASA) Goddard Earth Sciences
Distributed Active Archive Center (http://daac.gsfc.nasa.gov).
Moreover, it is noteworthy that the MODIS IR retrievals need
to be calibrated before their applications due to the lower ac-
curacy of the IR retrievals, which is one of the most prominent
disadvantages for the MODIS IR water vapor product.

B. Other Data Used for Comparisons and Analyses

GPS is a powerful instrument for PWV monitoring with
high temporal resolution and high precision, which could be
regarded as a reference data set to assess MODIS PWV. In

order to estimate PWV from GPS data, surface meteorological
observations (i.e., pressure and temperature) collected at the
GPS sites are required. However, the meteorological data were
unavailable usually, even for the International GNSS Service
network. In this paper, the GPS observations with surface
meteorological sensors from SuomiNet [8] are being incorpo-
rated for comparisons and analyses. The PWV product from
SuomiNet at 30-min sampling can be accessed at http://www.
suominet.ucar.edu/data/index.html.

Quality-checked radiosonde data were retrieved from The
British Atmospheric Data Centre (BADC, http://badc.nerc.ac.
uk). For the purpose of the comparison of radiosonde estimates
of PWV with MODIS IR water vapor product, the PWV mea-
surements in millimeters from radiosonde observations were
calculated in the following way:

PWV =

(∫ z1
z0

ρv(z) dz
)

ρ0
(1)

where ρ0 is the density of the water in kilograms per cubic
meter, and ρv(z) is the water vapor density in grams per cubic
meter measured by the radiosonde as a function of altitude in
meters between the surface altitude z0 and the highest altitude
z1 where humidity data are recorded by the radiosonde.

ERA-Interim [20] is a third-generation and the latest global
atmospheric reanalysis, which uses a much improved atmo-
spheric model and assimilation system from those used in
ERA-40. ERA-Interim represents a major undertaking by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) with several of the inaccuracies exhibited by ERA-
40 being eliminated or significantly reduced. In this paper, total
column water vapor from ERA-Interim reanalysis at full reso-
lution (i.e., 0.75◦ × 0.75◦ grids) every 6 h (i.e., 00h, 06h, 12h,
and 18h UTC) was adopted for the comparison and analyses
of MODIS IR water vapor data. The data were retrieved from
http://apps.ecmwf.int/datasets/data/interim_full_daily/.

C. Data Comparisons

The MODIS level-2 IR water vapor data (MOD05 products)
collected from the Aqua satellite between May 1 and May 31,
2011, during the nighttime over the center of the United States
(longitude: 110◦ W−100◦ W; latitude: 35◦ N−45◦ N; see
Fig. 1) are compared with PWV measurements estimated from
GPS, radiosonde, and ERA-Interim data. As MODIS PWV
is sensitive to the presence of clouds, only IR retrievals that
are 99% confidence clear are extracted for further analyses. In
order to obtain PWV values from GPS, radiosonde, and ERA-
Interim data at MODIS acquisition time, interpolation in time
domain is performed using cubic splines. In addition, MODIS
pixels were identified with the closest geographical coordi-
nates to each GPS, radiosonde, and ERA-Interim location. In
mountainous areas in Fig. 1, large differences and biases are
detected during the comparisons among PWV measurements
from GPS, radiosonde, and ERA-Interim data. In order to make
the comparisons more objective, we perform the analysis with
small and large altitude differences separately (see Fig. 2).
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Fig. 1. Distributions of radiosonde observations, SuomiNet sites, and ERA-
Interim grids superimposed on GTOPO30 (http://edc.usgs.gov/products/
elevation/gtopo30/gtopo30.html). Black pluses represent ERA-Interim grids,
red solid squares are GPS stations of SuomiNet, and green triangles denote ra-
diosonde observations. The white empty squares show the pairs of ERA-Interim
grids and SuomiNet sites within a given distance (e.g., 15 km in this study).

It can be inferred from the comparisons in Fig. 2(a)–(e) that
the MODIS IR values appeared to be overestimated for a dry
atmosphere and underestimated for a wet atmosphere, which is
consistent with the analyses of previous studies [17], [18]. Fur-
thermore, the performance of IR retrievals when compared with
radiosonde observations [see Fig. 2(a)] is much poorer [i.e., the
root mean square (RMS) was larger than 3 mm, and the standard
deviation (STD) of the mean difference was close to 3 mm] than
that with GPS and ERA-Interim reanalysis, which is mainly due
to the radiosonde drift. Fig. 2(b) and (c) shows the comparisons
between MODIS IR and GPS PWV, with their altitude differ-
ence below and above 100 m, respectively. The RMS difference
and the STD between MODIS IR and GPS PWV are 2.22 and
0.84 mm [see Fig. 2(c)], respectively. The deviations of MODIS
IR PWV from GPS PWV in Fig. 2(c) could lie in the fact
that MODIS is averaging different altitudes within the scene,
whereas GPS is referring to a specific point. However, when the
altitude difference is small [i.e., less than 100 m in Fig. 2(b)],
the large uncertainties of MODIS IR PWV measurements still
exist, and no obvious improvements are observed (i.e., an RMS
of 2.49 mm and an STD of 2.0 mm). The comparisons between
MODIS IR and ERA-Interim PWV in both small and large
altitude difference cases [see Fig. 2(d) and (e)] also show
similar results to Fig. 2(b) and (c). The RMS differences of
PWV measurements collocated in time and space are 2.58 and
1.96 mm, and the STDs are 2.34 and 1.58 mm in Fig. 2(d)
and (e), respectively. The probable cause for the difference in
Fig. 2(e) may be the poor performance of the numerical models
in mountainous regions, as well as the approximation in the
surface altitude, from which the derived PWV measurements
are highly dependent. Moreover, the main reason for the poor
performance in Fig. 2(d) with small altitude difference may
be due to the altitude difference between MODIS and ERA-
Interim PWV measurements, together with the low accuracy of
the MODIS IR retrievals. Therefore, the MODIS IR water vapor
should be properly calibrated for water vapor monitoring.

Fig. 2. Spatiotemporal comparisons among PWV measurements from MODIS
IR water vapor product, radiosonde observations, SuomiNet observations, and
ERA-Interim data. (a) MODIS IR PWV and radiosonde PWV. (b) MODIS IR
PWV and SuomiNet PWV with small altitude difference. (c) Similar to (b), but
with large altitude difference. (d) MODIS IR PWV and ERA-Interim PWV with
small altitude difference. (e) Similar to (d), but with small altitude difference.
(f) ERA-Interim PWV and SuomiNet PWV. Note that the black solid circles
are considered as outliers and are removed due to the 2σ exclusion. The linear
regression is shown as the green line, and the blue dash line is the zero bias.

III. DLCM

A. Model Construction and Implementation

Although the MODIS IR water vapor product can be avail-
able at both daytime and nighttime, the advantage in temporal
scale has not attracted more attention due to its poorer accuracy.
In order to take full advantage of the MODIS IR retrievals, we
develop a DLCM for the MODIS IR water vapor product. The
DLCM can be performed as follows (see Fig. 3).

1) Obtain the PWV measurements within the coverage area
of MODIS image from reliable tools (e.g., GPS, ra-
diosonde, ECMWF, or MWR) and estimate the reference
PWV values for calibration at the MODIS overpass time
(designated hereafter as PWVREF_CAL) by temporal in-
terpolation (e.g., spline interpolation).

2) Extract the original PWV values from the MODIS IR
water vapor product (designated hereafter as PWVORIG)



CHANG et al.: CALIBRATION AND EVALUATION OF PWV FROM MODIS INFRARED OBSERVATIONS AT NIGHT 2615

Fig. 3. Flowchart of the DLCM.

at the location of PWVREF_CAL in (1) by spatial interpo-
lation (e.g., inverse distance weight interpolation).

3) Subtract PWVREF_CAL from PWVORIG to get their
differential component, which is defined as delta1 =
PWVORIG − PWVREF_CAL, and then, implement the
traditional linear least square (designated hereafter as
LS) analysis between delta1 and PWVORIG to derive
the calibration coefficients and calibrate delta1. Note that
those data points with a difference between delta1 and
PWVORIG exceeding twice the STD should be removed.

4) Subtract again the calibrated delta1 from PWVORIG,
and the derived difference is recognized as the initial
calibration of PWVORIG.

5) Considering that some reference values from
PWVREF_CAL with pretty large differences from
PWVORIG may be recognized as outliers and be omitted
during the calibration, we compensate the moisture
information of MODIS IR retrievals by replacing the
corresponding values of PWVORIG with that from
PWVREF_CAL and get the final calibrated PWVORIG

from the DLCM (designated PWVDLCM hereafter).
From the steps of the DLCM described above, we can see

that the LS model is also adopted in the DLCM. The main
difference of the DLCM from the LS model lies in that the
former performs the regression analysis between PWVORIG

and its differential component from PWVREF_CAL, whereas
the latter do that between PWVORIG and PWVREF_CAL di-
rectly. In addition, comparing with the outliers being removed
directly when in the LS model, the proposed DLCM includes a
refinement (i.e., step 5) during the calibration.

For MODIS nIR water vapor product calibration, the LS
model has been proven to be a robust and effective calibra-
tion method [6], [19]. In this paper, the LS model will be
also adopted to calibrate the MODIS IR water vapor product.
Moreover, calibrations of MODIS IR water vapor with the LS
model and the DLCM during the night period at middle and low
altitudes will be analyzed in the next section.

TABLE I
BASIC PARAMETERS OF MODIS IR WATER VAPOR

PRODUCT USED DURING THE NIGHTTIME

Fig. 4. PWV distributions retrieved from MODIS IR water vapor product
at nighttime. (a)–(d) MODIS IR PWV fields collected on December 4, 2011;
July 19, 2009; January 22, 2009; and May 13, 2011, respectively. (a) MOD1.
(b) MOD2. (c) MOD3. (d) MOD4.

B. Reference PWV Measurements for Calibration

In order to calibrate the MODIS IR water vapor product with
the DLCM effectively, accurate PWVREF_CAL are required.
Although the radiosonde can detect PWV with high accuracy,
the derived PWV measurements are not the best choices to be
selected as PWVREF_CAL due to its sparse temporal and spatial
distribution. GPS is an effective tool that can derive the PWV
measurements with good accuracy and dense distribution, and
it is therefore incorporated to produce the PWVREF_CAL in this
study. In addition, ERA-Interim reanalysis provides the global
total column water vapor at 0.75◦ spatial resolution, which
could be also another potential data set for PWVREF_CAL.

Fig. 2(f) shows the comparisons of PWV measurements from
ERA-Interim reanalysis data and SuomiNet GPS observations
(designated hereafter as PWVGPS and PWVERA, respectively).
It should be noted that only data pairs between ERA-Interim
grids and SuomiNet sites within a distance of 15 km were
extracted for comparisons. It can be observed from Fig. 2(f)
that PWVERA matches PWVGPS quite well with high correla-
tion. The RMS difference is 1.64 mm, and the STD of mean
difference is about 1 mm. This consistency makes the ERA-
Interim reanalysis an ideal reference data set to calibrate the
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Fig. 5. Calibrations of MODIS IR PWV measurements in midlatitude regions when PWVGPS is used as PWVREF_CAL. The original and calibrated MOD1
PWV measurements were compared with (a) PWVGPS and PWVERA over both (b) ocean and (c) land, respectively. (d)–(f) Similar to (a)–(c), but for water
vapor field under wet atmosphere (i.e., MOD2).

performance of the DLCM. Moreover, in order to exclude the
errors of PWVERA in mountainous areas, when PWVERA is
used as PWVREF_CAL, we remove the data points with the
difference between PWVERA and PWVORIG exceeding twice
the STD. Thus, both PWVGPS and PWVERA are used as
PWVREF_CAL in this paper, respectively.

IV. CALIBRATION OF MODIS IR WATER VAPOR

IN DIFFERENT LATITUDE REGIONS

A. Study Area and MODIS IR Water Vapor Data

Four MODIS IR water vapor scenes acquired in midlatitude
(i.e., MOD1 and MOD2) and equatorial (i.e., MOD3 and
MOD4) regions are used for the DLCM calibration analyses
(see Table I). Both dry and moist cases in these regions are
adopted to test the performance of the proposed calibration
model (i.e., DLCM).

As the MODIS water vapor product is sensitive to the pres-
ence of clouds, and the frequency of global cloud coverage
is pretty high (e.g., as high as 88% for July 28, 2008 [21]),
invalid values are often found in MODIS-derived water vapor
field. In this paper, only MODIS pixels collected under clear-
sky conditions are retained for further analysis (see Fig. 4). The
basic parameters of the IR scenes are listed in Table I.

B. Case Studies at Middle Latitude

Two calibrated MODIS IR water vapor fields via traditional
LS method, as well as the proposed DLCM under dry (i.e.,
MOD1) and wet (i.e., MOD2) atmosphere in midlatitude re-
gions, are compared and analyzed here, respectively. In order
to evaluate the performance of the DLCM objectively, reli-
able reference PWV measurements for comparison (designated
hereafter as PWVREF_COM) are also needed. In this paper, both
PWVGPS and PWVERA are selected as PWVREF_COM. As

a result, both the internal and external coincidence precision
can be estimated via difference choices of PWVREF_CAL and
PWVREF_COM. The former can be achieved by selecting the
same data set for PWVREF_CAL and PWVREF_COM, whereas
the latter is evaluated by calibrating the MODIS IR PWV and
comparing the calibrations with different data sets. Accuracy
analyses of PWVORIG, PWV measurements calibrated by the
LS model (designated as PWVLS hereafter), and PWVDLCM

for MOD1 and MOD2 are shown in Fig. 5.
Selecting PWVGPS as PWVREF_CAL, the internal coinci-

dence comparisons of PWVORIG and calibrated MOD1 IR
retrievals with PWVGPS are shown in Fig. 5(a), whereas the
external coincidence comparisons of PWVORIG and calibrated
MOD1 IR retrievals with PWVERA over both ocean and land
are shown in Fig. 5(b) and (c), respectively. It is clear in
Fig. 5(a) that large deviations exist between PWVORIG and
PWVGPS. The STD of the mean difference and the RMS differ-
ence are 2.65 and 2.81 mm (see Table II), respectively, during
the comparison between PWVORIG and PWVGPS in Fig. 5(a).
After calibrating via the LS model, the STD and the RMS
between PWVLS and PWVGPS, however, increase to 6.33 and
6.29 mm, respectively. In addition, when comparing PWVLS

with PWVERA over both land and ocean, the PWVLS in
Fig. 5(b) and (c) is also overcalibrated. The probable cause for
this overcalibration may have resulted from the low correlation
coefficient between PWVORIG and PWVGPS (i.e., 0.36). In
other words, the relationship between PWVORIG and PWVGPS

is not linear in Fig. 5(a)–(c). Fortunately, during the imple-
mentation of the proposed DLCM, the correlation coefficient
between PWVORIG and delta1 ascends to 0.75, which results in
a better agreement of PWVDLCM with PWVREF_COM. Taking
the external coincidence comparisons as example, the STD of
the mean difference between PWVDLCM and PWVERA over
land decreases from 3.52 to 0.76 mm, together with the RMS
difference reduction from 7.18 to 2.79 mm (see Table II).
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TABLE II
STD OF THE MEAN DIFFERENCES AND RMS DIFFERENCES OF PWVORIG, PWVLS, AND PWVDLCM AGAINST

PWVREF_COM FOR MOD1, MOD2, MOD3, AND MOD4, RESPECTIVELY (UNIT: MILLIMETERS)

When PWVGPS is used as PWVREF_CAL, Fig. 5(d)–(f)
shows the comparisons of the original and calibrated MOD2
IR retrievals with PWVGPS and PWVERA over both ocean and
land, respectively. For the calibrations under wet atmosphere
(i.e., MOD2), the overcalibration of PWVLS is improved. Com-
parisons of PWVLS against PWVGPS show that the STD of
the mean difference decreases from 7.48 to 5.69 mm, together
with the RMS difference reduction from 12.52 to 5.58 mm (see
Table II). In addition, comparisons of PWVLS with PWVERA

over both land and ocean also reveal similar results. Moreover,
when the DLCM is applied, the resulting PWVDLCM appears to
be closer to PWVREF_COM than PWVLS. The STD of the mean
difference further decreases to 3.29, 4.56, and 3.41 mm; and the
RMS difference further reduces to 4.48, 8.98, and 4.75 mm,
respectively. Thus, further improvements are achieved for
MOD2 calibration after the DLCM was implemented.

As described above, PWVERA can be also selected as
PWVREF_CAL. Fig. 6(a) and (b) shows the comparisons of
the original and calibrated MOD1 IR retrievals with PWVGPS

and PWVERA, respectively; and Fig. 6(c) and (d) shows the
comparisons for MOD2. As shown in Fig. 6, both PWVLS

and PWVDLCM can relieve the deviations of PWVORIG from
PWVREF_COM for MOD1 and MOD2 successfully. After im-
plementation of the LS model, the STD of the mean differ-
ence decreases from originally 2.65 and 3.90 mm to 1.59 and
2.34 mm for MOD1 and from originally 7.48 and 10.23 mm to
6.09 and 8.33 mm for MOD2, and the RMS difference drops
from originally 2.81 and 4.63 mm to 2.12 and 2.34 mm for
MOD1 and from originally 12.52 and 16.10 mm to 6.01 and
8.36 mm for MOD2 (see Table II), respectively, when com-
paring PWVLS with PWVGPS and PWVERA. Furthermore, as
shown in Fig. 6 and Table II, the performance of PWVDLCM

is again better than that of PWVLS during both internal and
external coincidence comparisons. Taking the external coinci-
dence comparisons as example, the STD of the mean differ-
ence between PWVDLCM and PWVGPS further decreases to

Fig. 6. Calibrations of MODIS IR PWV measurements in midlatitude regions
when PWVERA is used as PWVREF_CAL. The original and calibrated MOD1
PWV measurements were compared with (a) PWVERA and (b) PWVGPS,
respectively. (c) and (d) Similar to (a) and (b), but for MOD2.

0.92 mm [see Fig. 6(a)] and 3.18 mm [see Fig. 6(c)] for
MOD1 and MOD2, and the corresponding RMS difference also
reduces to 1.87 mm [see Fig. 6(a)] and 4.50 mm [see Fig. 6(c)],
respectively. The encouraging results indicate that not only can
the DLCM calibrate the IR retrievals effectively but it also
avoids the overcalibrations of the LS model.

C. Case Studies at Low Latitude

When PWVGPS is used as PWVREF_CAL, comparisons of
the original and calibrated IR retrievals with PWVGPS and
PWVERA over both ocean and land under dry atmosphere
in equatorial region (i.e., MOD3) are shown in Fig. 7(a)–(c),
and those comparisons under wet atmosphere in equatorial
region (i.e., MOD4) are illustrated in Fig. 7(d)–(f). As shown
in Fig. 7(a)–(c), both the LS model and the DLCM calibrate
PWVORIG effectively. However, unlike the cases in midlatitude
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Fig. 7. Calibrations for MODIS IR PWV measurements at low latitude when PWVGPS is used as PWVREF_CAL. The original and calibrated MOD3 PWV
measurements were compared with (a) PWVGPS and PWVERA over both (b) ocean and (c) land, respectively. (d)–(f) Similar to (a)–(c), but for MODIS water
vapor field under wet atmosphere (i.e., MOD4).

region, the performance of the DLCM has not shown over-
whelming advantages over the LS model. Internal coincidence
comparison [see Fig. 7(a)] between PWVDLCM and PWVGPS

shows slightly better performance than the comparison between
PWVLS and PWVGPS (see Table II), whereas external coinci-
dence comparisons [see Fig. 7(b) and (c)] between PWVDLCM

and PWVERA over both ocean and land get worse than the
comparisons between PWVLS and PWVERA over both ocean
and land (see Table II). Moreover, similar results have been also
observed for MOD4 [see Fig. 7(d)–(f)], except that PWVLS is
again overcalibrated during the external coincidence compar-
isons with PWVERA over both ocean and land (i.e., the RMS
differences increase from originally 5.02 to 6.09 mm and from
originally 3.75 to 5.77 mm, respectively; see Table II). The
possible reason for the inferior and unsuccessful calibrations of
MOD3 [see Fig. 7(b) and (c)] and MOD4 [i.e., Fig. 7(e) and (f)]
with the DLCM may be the low density and uneven distribution
of selected PWVREF_CAL (i.e., PWVGPS in Fig. 7).

In another aspect, when the equally distributed PWVERA is
used as PWVREF_CAL, the performances of calibrated mea-
surements for MOD3 and MOD4 are shown in Fig. 8 and
Table II. It is clear from Fig. 8 that the choice of PWVERA

as PWVREF_CAL still cannot avoid the overcalibration of the
LS model. Taking MOD4 as an example, during the compar-
isons of PWVLS with PWVGPS and PWVERA, the STD of
the mean difference deteriorates by 24.4% and 24.5%, and
the RMS difference worsens by 11% and 20.9%, respectively
[see Fig. 8(c) and (d) and Table II]. However, unlike the
limited improvements or bad performance of the LS model, the
DLCM works robust for calibrating the IR retrievals of MOD3
and MOD4. Comparisons of PWVDLCM with PWVGPS and
PWVERA show that STD improvements of 23.4% and 23.2%
for MOD3 and 42% and 42.2% for MOD4 and RMS improve-
ments of 63.2% and 38.1% for MOD3 and 22.4% and 15.9%
for MOD4 have been achieved, respectively. The improve-

Fig. 8. Calibrations for MODIS IR PWV measurements at low latitude when
PWVERA is used as PWVREF_CAL. The original and calibrated MOD3
PWV measurements were compared with (a) PWVERA and (b) PWVGPS,
respectively. (c) and (d) Similar to (a) and (b) but for MOD4.

ments of the DLCM calibrated PWV measurements again show
that when the well-distributed reference PWV measurements
(i.e., PWVERA in Fig. 8) are selected, the DLCM can calibrate
the MODIS IR retrievals effectively.

V. CONCLUSION

In this paper, we have developed the DLCM to calibrate the
PWV measurements from MODIS IR water vapor product dur-
ing the nighttime. We conduct analysis to correct the MODIS IR
retrievals at nighttime on four scenes considering both dry and
moist atmosphere in midlatitude and equatorial regions with
the DLCM. Our findings from this study can be summarized
as follows.

1) Comparisons of IR retrievals during the nighttime
with ERA-Interim-, GPS-, and radiosonde-derived PWV
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measurements show RMS of 3.28, 2.61, and 2.66 mm
and STDs of 2.71, 1.92, and 2.30 mm, respectively. The
large uncertainties of MODIS IR retrievals indicate that
the MODIS IR water vapor product should be calibrated
before being applied to monitor water vapor at night.

2) When PWVGPS is used as PWVREF_CAL, the perfor-
mance of the LS model appears to be unstable since
the corrected PWV values are overcalibrated from time
to time (e.g., MOD1 and MOD4). Selecting PWVERA

as PWVREF_CAL, the LS model works well for MOD1
and MOD2, but it again leads to the overcalibrated PWV
measurements for MOD3 and MOD4. As such, despite
that the LS model has been proven to be an effective
model for MODIS nIR water vapor product correction, it
is confirmed in this paper that this model is not the prime
choice for MODIS IR retrievals calibration.

3) In general, the proposed DLCM can avoid the overcal-
ibration of MODIS IR PWV measurements effectively.
However, when the sparse covered PWVGPS is used as
PWVREF_CAL in equatorial regions, the performance of
the DLCM calibrated IR retrievals is also unsatisfactory.

4) One of the crucial factors for the successful calibration
of the proposed DLCM is the high density of
PWVREF_CAL. By selecting the global equally
distributed PWVERA rather than PWVGPS as
PWVREF_CAL, more accurate calibrated MODIS
IR retrievals at nighttime can be expected.

However, calibrations of MODIS IR water vapor product
with the DLCM over high-latitude regions were not demon-
strated and analyzed in this paper. Although the ERA-Interim
analysis data were globally distributed and can be used for
building the DLCM and calibrating the IR retrievals, no proper
data were found to objectively assess the calibration (e.g., only
a few GPS stations were located near the Arctic and Antarctica
regions). Furthermore, the low frequency of the MODIS cloud-
free condition in both the Arctic and Antarctica regions [22],
[23] may be another limitation to the application of the DLCM
in high-latitude regions.
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