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A B S T R A C T

Droughts are recurrent and persistent multi-hazard events that significantly impact ecosystems, 
agriculture, water supply, and economies. This study proposes the Genetic Algorithm-Optimized 
Multispectral Soil-Vegetation Drought Index (GA-MSVDI) for precision agriculture and drought 
assessment in Egypt’s Nile Delta, El Kairouan in Tunisia, and Rabat-Salé-Kénitra in Morocco. This 
is based on the evaluation of soil moisture, vegetation health, and surface temperature from high- 
resolution satellite data derived from Landsat-8, Sentinel-1, and Sentinel-2. The Genetic Algo-
rithm optimization process assigned the following weights: NDVI (0.24), NDII (0.20), LST (0.23), 
SMI (0.19), and SAVI (0.14). These weights underline, therefore, the requirement of Water 
content of vegetation and soil in drought detection, with NDVI and NDII being highly influential 
factors. The GA-MSVDI has been validated against existing indices like VHI for all seasons, which 
returned very high correlations ranging from 0.57 to 0.91 over the study areas. Compared to 
traditional indices such as NDVI, TCI, VCI, and SWCI, the proposed index demonstrated superior 
performance in capturing drought conditions across different climatic regions. This strong per-
formance across various geographical regions and seasons proves GA-MSVDI to be a potential, 
reliable tool for accurate monitoring the drought in agricultural environments, particularly within 
water-scarce regions like North Africa.

1. Introduction

A significant natural calamity known as drought usually results from a lack of precipitation (Edokossi et al., 2024; Elameen et al., 
2023; Jin and Zhang, 2016; West et al., 2019). Droughts can be classified as meteorological, agricultural, hydrological, or socioeco-
nomic by the American Meteorological Association (Esfahanian et al., 2016; Li et al., 2024). A very low precipitation spell lasting 
several months or even years is known as a meteorological drought; Groundwater, streamflow, or total water storage that is lower than 
long-term averages result in a hydrological drought; Dry conditions that result in higher demand than supply for specific goods are 
referred to as socioeconomic droughts. When soil moisture levels fall below what is necessary for plants to function properly, agri-
cultural drought breaks out (Alahacoon et al., 2021; Hao et al., 2015; Jiao et al., 2019; Yao et al., 2020). A crop’s output can be 
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significantly decreased by an agricultural drought, which is often a brief period of dryness (a few weeks), but it happens at a crucial 
point in the growth season (Heim, 2002; Zhang et al., 2013).

Establishing a nationwide drought strategy or policy requires the creation of an extensive mechanism for monitoring droughts that 
can promptly give a heads-up of a drought’s beginning, the degree, time, and area of coverage (Hayes et al., 2011). The factors that are 
utilized to describe the physical features of drought, such as its length, intensity, and spatial extent, are known as drought indicators 
and indices. Indices are usually computationally generated numerical severity descriptions or extent of a drought; on the other hand, 
indicators are broader terms that encompass characteristics like temperature, streamflow, rainfall, and drought indices (Hao and 
Singh, 2015; Hayes et al., 2012). Many drought indices have been developed in order to track and measure drought. To measure 
drought, each drought indices needs a set of input parameters (Dai, 2011; Esfahanian et al., 2017). Depending on drought type, 
drought indices were categorized and then separated into conventional/region-specific and remote sensing categories based on the 
type of data used. Additionally, simple indices including microwave, thermal, and optical as well as composite indices were separated 
out of the drought indices based on type remote sensing (Alahacoon and Edirisinghe, 2022; Holben, 1980; Felegari et al., 2021). 
Palmer Drought Severity Index (PDSI) (Li and Cai, 2024; Palmer, 1965), Standardized Precipitation Index (SPI) (Sakellariou et al., 
2024), and Standardized Precipitation Evapotranspiration Index (SPEI) (Dong et al., 2023; Vicente-Serrano et al., 2010) are the most 
commonly used drought indices derived from site data. These indices, which primarily offer precise assessments of agricultural 
drought conditions in specific places, depend on agroclimatic stations’ in-situ readings of soil moisture, evapotranspiration, and 
precipitation. Nevertheless, because of their sparse distribution and small number, these agroclimatic stations lack the geographical 
representative aspect of agricultural drought (Hazaymeh and Hassan, 2017).

Assessment of the drought has benefited greatly over the past few years by the use of high-resolution model data and remote sensing 
(Abdelrahim and Jin, 2025; Edokossi et al., 2020; Jin et al., 2022, 2024; Najibi and Jin, 2013). Given its broad geographic coverage 
and reasonably good temporal and spatial precision, satellite imagery is a useful tool for monitoring drought. When there are few 
sample gauges in a given area, remote sensing data could be the only source of information accessible for tracking drought (Farrag 
et al., 2020; Gaber et al., 2021; Jiao et al., 2016; Wu, 2013). Currently, most studies were concentrated on the creation of concepts for 
drought monitoring and indices using data from remote sensing for various applications (Afshar et al., 2021; Araneda-Cabrera et al., 
2021; Corbari et al., 2024; Dos Santos Araujo et al., 2024; Li et al., 2024; Qin et al., 2021; Sánchez et al., 2016; Schwabe et al., 2013; 
Shahzaman et al., 2021; Skakun et al., 2016; Tang and Li, 2014; Tian et al., 2018; Zhang et al., 2017), such as the normalized difference 
vegetation index (NDVI) (Thenkabail et al., 1994), Shortwave Infrared Water Stress Index (SIWSI) (Fensholt and Sandholt, 2003), 
Visible and Shortwave Drought Index (VSDI) (Zhang et al., 2013), Vegetation Condition Index (VCI) (F.N. Kogan, 1995), Soil Adjusted 
Vegetation Index (SAVI) (Huete, 1988), Temperature Condition Index (TCI) (Kogan, 1997), Normalized Difference Infrared Indexes 
(NDII) (Fensholt and Sandholt, 2003), Vegetation Health Index (VHI) (Alahacoon et al., 2021; Bhuiyan et al., 2006), and Soil Moisture 
Condition Index (SMCI) (Zhang and Jia, 2013).

High-resolution data on the state of agricultural drought that is continuously captured, both geographically and temporally, is 
needed to address this increased risk of drought (Dotzler et al., 2015). More and more, near-real-time, multi-temporal, and regional 
Earth observation (EO) applications using Sentinel-2 (S2) sceneries are being used (Sudmanns et al., 2020). The restricted availability 
of optical data resulting from cloud cover is a significant drawback. However, because of their ability to gather data concerning any 
weather circumstances and at night, Synthetic Aperture Radar (SAR) systems like Sentinel-1 (S1) may be able to significantly close 
these monitoring gaps (Felegari et al., 2021; Kaiser et al., 2022). Understanding the earth’s surface’s thermal behavior and drought 
monitoring depend heavily on LST estimation, or land surface temperature estimation (Pande et al., 2024). Using Google Earth Engine 
GEE (Mullissa et al., 2021; Teluguntla et al., 2018), a cloud-based platform that makes remote sensing data analysis and processing 
easier, is one of the efficient ways to estimate LST. Thermal infrared data from sensors such as Landsat-8 is among the several satellite 
imagery options provided by GEE (Pande et al., 2023; Ren et al., 2021). Using time series that illustrate surface processes, the increased 
availability of data opens up new possibilities for temporal as well as spatial data analysis (Urban et al., 2018).

The majority of current drought indices rely on coarse resolution data with a range of 250 m to 1 km, despite notable improvements 
in drought monitoring. The localized subtleties of drought conditions are frequently missed by these intermediate to coarse resolution 
datasets, such those from MODIS, especially in varied environments. Additionally, very little research has been done on drought 
monitoring in Africa, a continent that is extremely susceptible to both water scarcity and climate variability (Atzberger, 2013; Brandt 
et al., 2016; Malakar and Hulley, 2016; Tran et al., 2017; Trnka et al., 2020; Winkler et al., 2017). However, the fact that these in-
tegrated, remotely-sensed indices were created and assessed for a particular climatic or geographic area severely limits their appli-
cability (Zhang et al., 2017). Generally, the indices were established across study areas that are limited to a single climate region. A 
small number of these indices were created in a variety of settings spanning wide geographic areas. If specific indices are utilized in 
climate zones that differ significantly from those in which they were established, this geographic restriction may result in subpar 
performance (Quiring and Ganesh, 2010).

This research aims to address these gaps by developing Genetic Algorithm Optimized Multispectral Soil-Vegetation Drought Index 
(GA-MSVDI) using high-resolution (10 m) Landsat, Sentinel-2, and Sentinel-1 data by integrating multiple indices through genetic 
algorithms. Unlike prevailing pre-defined weighted drought indices or those using mono-sensor inputs, GA-MSVDI utilizes an opti-
mization technique to distribute adaptive weights over remote sensing indexes for flexibility to diverse climatic regimes. Using Google 
Earth Engine GEE and Python all calculations were carried out. This approach not only enhances spatial resolution but also offers 
timely and accurate drought information, which is essential to efficient resource administration and policy-making in drought-prone 
regions of North Africa. The rest of this paper is consistent of materials and methods in Section 2, Section 3 contains results, analysis 
and discussions, and the conclusion is given at Section 4.
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2. Materials and methods

2.1. Study areas

The study area covers approximately 68,000 km2 distributed in it. The three parts of North Africa include the Nile Delta portion in 
Egypt, El Kairouan and surrounding in Tunisia, and Rabat-Salé-Kénitra in Morocco. The most important agricultural place in Egypt is 
the Nile Delta. It stands between latitudes 30◦00′ N and 31◦30′ N, and longitudes 31◦00′ E and 32◦30′ E. Fertile soils and a flat 
topography make the Delta one of the agricultural zones with the highest productivity of the country (Moursy et al., 2023). Annual 
Rainfall - Less than 200 mm on an average per year. Rainfall Variation - Practically nil, since less than 200 mm of rainfall occurs 
annually on Egypt’s Mediterranean coast. Rainfall decreases from the north towards the south in the Nile Delta. Cropping Season are 
two crops in the country. They are the main cropping period, from April to September, which is the season of maximum need of water, 
and the winter cropping, from October to March. Cereals like sugar cane, rice, cotton, and maize are cultivated during the summertime, 
while wheat, clover, and beans are grown in winter (Ayyad et al., 2019; Ewis Omran and Negm, 2020).

El Kairouan and its environs are famous for olive production, and it is one of the hottest prefectures in Tunisia. Geographically, it 
lies between approximately 36◦10′N and 35◦10′N latitude and 09◦35′E and 10◦20′E longitude (Al Saud, 2022). The semi-arid climate 
has varying characteristics according to seasonal changes. In the wet season, which runs from October until March, the amount of 
rainfall highly changes between 200 and 500 mm, or less (Salem et al., 2023; Zekri, 2020).

Rabat-Salé-Kénitra is located in the northwest of the state of Morocco, generally between latitudes 35◦00′N and 33◦90′N, and 
between longitudes 06◦40′W and 05◦20′W (Amiri et al., 2021), with roughly 600 mm of annual rainfall on average. It has a Medi-
terranean climate, which means it features hot summers, mainly dry, and warm winters with a rainy period running from November to 
March (Behnassi et al., 2021; Schilling et al., 2020). The three study areas are illustrated in Fig. 1, and summarized in Table 1.

2.2. Data acquisition

To ensure comprehensive coverage of the study areas, we utilized high-resolution satellite images with minimal cloud coverage 
(less than 10 %) from the Landsat-8, Sentinel-2 (S2), and Sentinel-1 (S1) satellites. These images were sourced using Google Earth 
Engine (GEE), a robust cloud-computing platform that facilitates large-scale environmental data analysis. The selected timeframe for 
data collection spanned to three months from January to March, from April to June, from Juley to September, and from October to 
December. The data collection period included the year 2020, the study could be performed on any year staring from 2015, when the 
satellite S1 had been lunched. Table 2 summarized data information.

Fig. 1. Geographical representation of the study areas, including the Nile Delta (Egypt), El Kairouan (Tunisia), and Rabat-Salé-Kénitra (Morocco).
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2.3. Methodology

Below is the flowchart used in developing the methodology of the Genetic Algorithm Optimized Multispectral Soil-Vegetation 
Drought Index as shown in Fig. 2. Data gathering from the three important satellite sources, S1, S2, and Landsat-8, constitutes the 
very first step of the process in this study. The S1 radar data are considered to represent the soil moisture after a series of preprocessing, 
such as noise reduction and terrain correction. This way, we can make sure that the data is correct and ready to be analyzed. 
Meanwhile, S2 and Landsat-8 provide optical data to be used in computing several vegetation indices, such as NDVI, NDII, SAVI, and 
LST. These indices help us understand the health of vegetation, soil moisture levels, and temperature at the surface, all of which are 
essential indicators of drought.

Once prepared, your data is fed into a system based on Genetic Algorithms. In the first place, this system normalizes the data to 
ensure that all the inputs are comparable. Then, the GA is fine-tuned to identify the best combination of these indices to accurately 
reflect drought conditions. The GA process is iterative: it begins by generating a range of potential solutions, evaluates how well each 
one performs, and then refines the best solutions through selection, crossover, and mutation techniques. This process continues until 
the most effective solution is found.

Finally, the optimized outputs from the GA are used to generate the GA-MSVDI, which is subsequently used to produce drought 

Table 1 
A summary of key attributes for the three study areas, including climate classification, average annual rainfall, cropping seasons, and dominant crops 
cultivated in each region.

Location Climate Main Crops Rainfall (mm/year) Rainfall 
Season

Area 
(km2)

Nile Delta, Egypt Mediterranean, very limited 
rainfall

Summer: sugar cane, rice, cotton, maize ~200 (only on 
Mediterranean coast)

October to 
March

55,698
Winter: Wheat, clover, beans

El Kairouan, 
Tunisia

Semi-arid, high seasonal 
variation

Olives, barley, wheat, pomegranates, figs, 
tomatoes, peppers, chickpeas, lentils, alfalfa

200–500 October to 
March

4779

Rabat-Salé- 
Kénitra, 
Morocco

Mediterranean, hot dry 
summers, mild wet winters

wheat, barley, potatoes, tomatoes, carrots, 
citrus, grapes, apples, olives, beans, peas, 
alfalfa

~600 November to 
March

8338

Table 2 
Summary of satellite datasets, including source, spatial resolution, and revisit frequency.

Data Type Dataset Name Source Spatial Resolution Temporal Resolution

Sentinel-1 (S1) COPERNICUS/S1_GRD ESA 10 m 6 days
Sentinel-2 (S2) COPERNICUS/S2_SR ESA 10 m 5 days
Landsat-8 LANDSAT/LC08/C02/T1_L2 USGS 30 m 16 days

Fig. 2. A detailed flowchart illustrating the step-by-step methodology used to develop the Genetic Algorithm-Optimized Multispectral Soil- 
Vegetation Drought Index (GA-MSVDI). The process includes data acquisition, preprocessing, feature selection, Genetic Algorithm (GA) optimi-
zation, drought index computation, and validation against established drought indices.
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maps. These maps are validated and compared against existing indices like NDVI (Normalized difference vegetation index), VCI 
(Vegetation Condition Index), TCI (Temperature Condition Index), and SWCI (Soil Water Content Index), as well as the Vegetation 
Health Index (VHI), to ensure the reliability and accuracy of the new index. This comprehensive methodology leverages multi-source 
data and advanced optimization techniques to develop a high-resolution drought monitoring tool tailored for agricultural applications 
in North Africa. This thorough testing across multiple areas underscores the index’s robustness and suitability for broad application, 
particularly in regions like North Africa where accurate drought monitoring is critical.

2.3.1. Remote sensing indices

2.3.1.1. Normalized Difference Vegetation Index NDVI. The NDVI, whose index values change according to variations in vegetation 
conditions, can be used as a guide for areas with irrigation since it shows the amount of green biomass (Brown and Pervez, 2014; 
Pervez and Brown, 2010). The NDVI is highly impacted by the weather, with arid and semi-arid regions being more affected than other 
places (Sardooi et al., 2021). NDVI time series data with a temporal resolution of 5 days and a geographical resolution of 10 m can 
potentially be obtained by high spatial satellites like Sentinel-2. For the purpose of drought monitoring, it can be utilized to identify 
distinct multi-temporal, spectral vegetation patterns (Chen et al., 2023). NDVI was calculated using the famous formula in eq. (1)
(Afshar et al., 2021). 

NDVI=
(NIR–RED)
(NIR + RED)

(1) 

where NIR is the near infra-red band and RED is the red band.

2.3.1.2. Soil Adjusted Vegetation Index SAVI. Spectral signatures of different forms of land cover are not the same as those of soil. 
Reflectance rises in direct proportion to wavelength increases in the visible and near-infrared regions. Nonetheless, a number of factors 
influence the rate of increase. The reflectance of soil can be reduced by both soil moisture and organic materials. For a variety of soil 
types and physiognomies, the relationship between near-infrared and red reflectance is consistent. The two values are connected and 
exhibit a linear connection with changes in the moisture content (Binte Mostafiz et al., 2021; Konno and Homma, 2023; Rhyma et al., 
2020). For every kind of soil, there is a very unique relationship. To take into consideration the impact of soil brightness in areas with a 
restricted amount of vegetation, the L coefficient (which is assumed in this work to be equal to 0.5) is added to the computation of 
SAVI, which is determined using formula eq. (3) from NIR and RED (Huete, 1988; González-Gómez et al., 2022). 

SAVI=
(NIR–RED)

(NIR + RED + L)
*(1+ L) (3) 

2.3.1.3. Normalized Difference Infrared Index NDII. Using ratios of various near infrared reflectance (NIR) and shortwave infrared 
reflectance (SWIR) values as defined by eq. (4), the NDII was created (Fensholt and Sandholt, 2003; Mathivha and Mbatha, 2021). 

NDII=
(NIR–SWIR1)
(NIR + SWIR1)

(4) 

Owing to the leaf’s high absorption, the NDII’s shortwave infrared reflectance property, which is negatively correlated with leaf 
water content and offers further details on the water that is available for vegetation to use in the soil, can be used to both detect plant 
water stress and measure vegetation’s water content (Mbatha and Xulu, 2018; Sriwongsitanon et al., 2016).

2.3.1.4. Land Surface Temperature LST. The temperature of the topmost layer of soil LST has a major effect on the output of agri-
cultural crops, the need for water, and the rise in area mortality that occurs throughout the summer. It has long been known that plant 
temperature serves as a reliable predictor of water availability. The irrigation-induced change in the LST gap between day and night 
was reflected using temperature data collected both during the day and at night (Abdulmana et al., 2021; Arabi Aliabad et al., 2023). 
To compute LST, Thermal Infrared Sensor (TIRS) and Landsat Operational Land Imager (OLI) time series of Landsat images large-scale 
environmental data analysis was produced using GEE (Begum et al., 2021; Pande et al., 2024).

2.3.1.5. Soil Moisture Index SMI. Weather forecasting and drought monitoring both require an understanding of soil moisture content 
(Mishra et al., 2017). Due to the fact that aperture radar (SAR) sensors can detect the target’s geometrical and dielectric properties, 
they provide an effective means of mapping and tracking soil moisture. Furthermore, Weather does not affect SAR acquisitions, which 
gives them a major edge over optical imaging when there is cloud cover. Vegetation cover, however, complicates these processes and 
affects how the combined effects of soil moisture and vegetation cover interact with SAR backscatter (Bhogapurapu et al., 2022a, 
2022b; Chaudhary et al., 2022). In order to do this, average surface soil moisture values are calculated using equation (5). An indicator 
of soil moisture that has a value ranging from 0 to 1, where 0 denotes the most dry soil conditions and 1 denotes the most wet soil 
conditions (Foucras et al., 2020) 

SMI=
(σVV–σVVmin)

(σVVmax–σVVmin)
(5) 
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VV (Vertical transmit, Vertical receive), σVV is the backscatter at a given time, σVVmin and σVVmax are the minimum and 
maximum backscatter values observed over the time series, representing very dry and very wet conditions, respectively.

2.3.2. Genetic Algorithm (GA) Optimization
Genetic algorithm is the most popular optimization methods (Chen et al., 2022). The objective is to determine the ideal weights for 

each index (SMI, NDVI, NDII, LST, SAVI) to maximize the correlation with drought measurements (Kaur and Sood, 2020). Fig. 3
illustrate the concept and steps of GA. 

a) Initialization

Start by creating an initial population of potential solutions. Each solution is a unique set of weights assigned to the drought indices 
(SMI, NDVI, NDII, LST, SAVI). Each index’s contribution to the final GA-MSVDI is determined by these weights (Dey, 2023; Gad, 2023; 
Katoch et al., 2021). 

b) Fitness Evaluation

Assess each solution by calculating a fitness score. The score would be based on the weighted average of the indices such that the 
correlation against drought measurements such as the VHI or VDI is maximized and the better the correlation, the higher the fitness 
score (Dey, 2023; Gad, 2023; Razavi-Termeh et al., 2023). 

c) Selection, Crossover, and Mutation

Assess each population member’s fitness score to determine which of their solutions performs best. These top solutions are more 
likely to produce better offspring in the next generation. Pair the selected solutions and perform crossover operations. In this step, 
portions of the weights from two parent solutions are exchanged to create new offspring. This helps combine favorable characteristics 
from different solutions. Introduce small, random changes (mutations) to some of the offspring’s weights. This step is crucial for 
maintaining diversity within the population and for exploring new areas of the solution space that may lead to better results (Dey, 
2023; Gad, 2023; Katoch et al., 2021; Razavi-Termeh et al., 2023). 

d) Iteration

Repeat the process of fitness evaluation, selection, crossover, and mutation over multiple generations. With each generation, the 
algorithm refines the solutions, gradually improving the weight combinations. Continue iterating until the algorithm converges, 
meaning that further generations do not produce significantly better solutions. At this point, the best set of weights has been identified 
(Dey, 2023; Katoch et al., 2021; Razavi-Termeh et al., 2023). 

e) Final Output

The algorithm outputs the optimized set of weights for the GA-MSVDI. These weights are then used to combine the indices as 
illustrated in eq. (6)., resulting in a highly accurate drought index that correlates well with actual drought conditions (Dey, 2023; Gad, 
2023; Katoch et al., 2021; Razavi-Termeh et al., 2023). 

GA-MSVDI = w1 * NDVI + w2 * SMI + w3 * NDII + w4* SAVI + w5* LST                                                                                  (6)

Fig. 3. Illustration of the Genetic Algorithm’s optimization process, demonstrating how multiple drought-related parameters are weighted and 
integrated into GA-MSVDI for improved drought assessment.
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2.3.3. Validation and performance assessment of GA-MSVDI
Validation is a crucial stage in the creation of a drought index, as it evaluates the index’s accuracy in characterizing droughts 

(Bhuyan-Erhardt et al., 2019; Hao and AghaKouchak, 2014). Comparing a drought index’s temporal and spatial data with other widely 
recognized drought indices is a frequently used method of validation (Hao and Singh, 2015; Zhou et al., 2013).

GA-MSVDI is validated against established drought indices such as the Vegetation Health Index (VHI). The VHI is one of the most 
commonly used remote sensing drought indicators (Bento et al., 2018; Pei et al., 2018; Shahzaman et al., 2021). Its definition is the 
simple average of two elements, VCI and TCI, which are obtained from data on the visual and thermal bands, respectively. (Bento et al., 
2020; Qin et al., 2021).

To determine whether GA-MSVDI is suitable for drought monitoring, a performance evaluation of the system is required (Bayissa 
et al., 2018; Wable et al., 2019). The study evaluated the performance of five drought indices (GA-MSVDI, NDVI (Afshar et al., 2021), 
SWCI (Chen et al., 2020), TCI and VCI (Bento et al., 2020; Qin et al., 2021). The correlation between VHI and the other five drought 
indices was calculated to evaluate the performance of each other.

3. Results and discussions

3.1. GA-MSVDI equation

Weights returned by the Genetic Algorithm Optimization process for the indices were as follows: SMI is 0.19, NDVI is 0.24, NDII is 
0.20, SAVI is 0.14, LST is 0.23. The combined weights of SMI and NDII are 0.39, simply indicating that these two indices representing 
soil moisture and vegetation water content are the two most contributing factors to the drought index. This goes to underline the 
critical role of soil and vegetation water status in detecting drought conditions, particularly in agricultural monitoring. The next most 
influencing factor is NDVI, relating to general health and greenness of vegetation with a weight of 0.24. LST, at 0.23, also plays an 
important role, underscoring the importance of temperature in assessing drought severity. The relatively lower weight of SAVI (0.14) 
suggests its specific but less dominant role in the overall index. This weighting scheme effectively prioritizes the most critical factors 
for accurate drought monitoring, particularly in regions with varying soil moisture and vegetation conditions.

3.2. Validation

To assess GA-MSVDI accuracy, the correlation between VHI and GA-MSVDI was calculated. Figures (4-6) show the correlation 
coefficient between GA-MSVDI and VHI in the three study areas and Table 3 summarize these correlation coefficients. The correlation 

Fig. 4. Scatter plot showing the correlation between GA-MSVDI and VHI in the Nile Delta. The Pearson correlation coefficient (r) ranges from 0.77 
to 0.91, indicating a strong agreement and confirming GA-MSVDI’s reliability in detecting drought conditions.
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Fig. 5. Scatter plot of GA-MSVDI vs. VHI in El Kairouan. The Pearson correlation coefficient (r) ranges from 0.82 to 0.85, demonstrating the index’s 
strong performance in semi-arid agricultural regions.

Fig. 6. Scatter plot of GA-MSVDI vs. VHI in Rabat-Salé-Kénitra. The Pearson correlation coefficient (r) ranges from 0.57 to 0.88, confirming GA- 
MSVDI’s effectiveness in capturing drought variability in a complex climate.
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between VHI and the other drought indices was calculated to assess how well the drought indexes performed. Figures (7-9) illustrate 
the correlation values between VHI and GA-MSVDI, NDVI, SWCI, VCI and TCI.

3.3. Drought maps

The drought maps as shown at figures 10–12 generated using the newly developed high-resolution drought index GA-MSVDI 
provide a detailed spatial representation of drought severity across the study areas. These maps further integrate the optimized 
weights from the Genetic Algorithm and thereby represent the combined effects of SMI, NDVI, NDII, SAVI, and LST. Based on this 
integrated assessment of the condition of soil water content and vegetation health, the visual outputs highlight the areas that are 

Table 3 
A quantitative comparison of GA-MSVDI’s correlation (Pearson correlation) with VHI for each study area across four seasons. The results confirm that 
GA-MSVDI consistently maintains higher correlation values (0.57–0.91) compared to traditional indices, validating its effectiveness in monitoring 
drought conditions.

Date JAN-MAR APR-JUN JUL-SEP OCT-DEC

Study area

Nile delta 0.91 0.82 0.74 0.84
El Kairouan 0.83 0.83 0.82 0.85
Rabat-Salé-Kénitra 0.57 0.88 0.76 0.85

Fig. 7. Comparison of GA-MSVDI with NDVI, TCI, VCI, and SWCI in the Nile Delta across four seasons. GA-MSVDI shows the highest Pearson 
correlation with VHI (0.77–0.91), outperforming NDVI (0.69–0.80), TCI (0.68–0.81), VCI (0.67–0.79), and SWCI (0.65–0.72), confirming its su-
perior accuracy in detecting drought conditions.

Fig. 8. Seasonal comparison of GA-MSVDI with NDVI, TCI, VCI, and SWCI in El Kairouan. GA-MSVDI maintains the highest correlation with VHI 
(0.82–0.85), surpassing NDVI (0.71–0.81), TCI (0.69–0.79), VCI (0.70–0.79), and SWCI (0.68–0.75), highlighting its effectiveness in semi-arid 
agricultural regions.
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suffering from mild to severe drought conditions.
The maps also reveal the temporal dynamics of drought, showcasing how drought conditions evolve and spread over time. These 

visual tools are essential for stakeholders, providing actionable insights for drought preparedness and management, especially in 
agriculture-dependent regions where timely intervention can mitigate the impact on crop yields and water resources. The resulting 
drought maps closely align with the precipitation and temperature patterns observed on the Climate Maps website as shown at figures 
13 and 14, accessed on August 24, 2024, at climatemaps.romgens.com. This correlation underscores the reliability of the recently 
created drought index in identifying real-time drought conditions. Areas identified as drought-prone in the drought maps correspond 
well with regions experiencing lower precipitation and higher temperatures, as indicated by the climate data. This consistency across 
datasets reinforces the validity of the drought maps as a powerful tool for assessing drought severity and making informed decisions for 
resource management and agricultural planning.

3.4. Analysis

The results for the GA-MSVDI reveals that this newly developed index demonstrates strong and consistent performance across all 
three study areas. Over the whole year, GA-MSVDI has a very high correlation coefficient from 0.74 to 0.91 with VHI in the Nile Delta. 
This indicates that the index is highly effective for capturing drought conditions in this very important agricultural region wherein 
accurate monitoring is of decisive significance for water resource and crop production management. The comparison with other 
established indices, such as NDVI, TCI, VCI, and SWCI, further highlights the superior performance of GA-MSVDI, especially in the 
April–June period, where it outperforms NDVI, TCI, VCI, and SWCI, demonstrating its robustness.

In El Kairouan, Tunisia, GA-MSVDI also shows high correlation values, consistently above 0.80, indicating its reliability in a semi- 
arid climate with high seasonal variability. The comparison shows that while NDVI performs relatively well, GA-MSVDI provides a 
more comprehensive assessment, particularly during the summer months when drought conditions are more pronounced. Rabat-Salé- 
Kénitra in Morocco presents a slightly more variable performance, with GA-MSVDI correlation coefficients ranging from 0.57 to 0.88. 
However, during the critical April–June and October–December periods, GA-MSVDI exhibits strong correlations (0.88 and 0.85, 
respectively), surpassing other indices. This suggests that GA-MSVDI is particularly effective during key agricultural seasons, aligning 
well with observed precipitation and temperature patterns.

The results validate GA-MSVDI as a highly reliable and accurate tool for drought monitoring, particularly in regions with complex 
environmental conditions. The strong correlation with VHI across different climates and seasons underscores its potential for broader 
application in North Africa and beyond.

3.5. Discussion

The validation of the Genetic Algorithm Optimized Multispectral Soil-Vegetation Drought Index (GA-MSVDI) against traditional 
drought indices, such as the VHI, has demonstrated the robustness and reliability of the new index across diverse climatic regions in 
North Africa. The GA-MSVDI consistently exhibited high correlation values with VHI, particularly in the Nile Delta and El Kairouan 
regions, indicating its strong potential for accurate drought monitoring in regions characterized by significant agricultural activities 
and variable climatic conditions.

Unlike other traditional drought indices which apply fixed empirical weightings, GA-MSVDI applies a Genetic Algorithm-based 
optimization method to dynamically weigh the contribution of different satellite-derived indices. This offers greater flexibility 
under different climatic conditions. GA-MSVDI also employs multi-source high-resolution satellite data (S1, S2, and Landsat-8), 
whereas most existing studies employ coarser-resolution data such as MODIS or AVHRR. This improvement enhances spatial 

Fig. 9. Performance comparison of GA-MSVDI with NDVI, TCI, VCI, and SWCI in Rabat-Salé-Kénitra. GA-MSVDI achieves the highest correlation 
with VHI (0.57–0.88), outperforming NDVI (0.63–0.79), TCI (0.67–0.73), VCI (0.61–0.72), and SWCI (0.62–0.74), demonstrating its reliability in 
capturing drought variability in a complex climate.
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precision and drought identification, particularly in heterogeneous agricultural landscapes. GA-MSVDI consistently outperforms the 
traditional indices in the identification of drought in all study areas and seasons. In the Nile Delta, GA-MSVDI was top-ranked in 
correlation with VHI (0.74–0.91) ahead of NDVI (0.69–0.80), TCI (0.68–0.81), VCI (0.67–0.79), and SWCI (0.65–0.72). This trend was 
mirrored in El Kairouan, where GA-MSVDI correlations (0.82–0.85) were greater than NDVI (0.71–0.81) and TCI (0.69–0.79).

In Rabat-Salé-Kénitra, GA-MSVDI varied seasonally (0.57–0.88) but was still superior to NDVI (0.63–0.79) and SWCI (0.62–0.74). 
Surprisingly, SWCI and VCI consistently showed inferior performance (≤0.75) across all regions. The results confirm the higher 
precision and adaptability of GA-MSVDI as a more reliable tool for precision agriculture and drought monitoring over conventional 
indices.

The superior performance of GA-MSVDI can be attributed to its optimized weighting scheme, which emphasizes the combined 
importance of SMI and NDII. These components collectively accounted for a weight of 0.39, highlighting the critical role of soil 
moisture and vegetation water content in accurately detecting drought conditions.

Fig. 10. Drought map at Nile delta in Egypt (a) Jan to Mar (b) Apr to Jun (c) Jul to Sep (d) Oct to Dec (i) subset Jan to Mar (ii) subset Apr to Jun (iii) 
subset Jul to Sep (iv) subset Oct to Dec (v) google earth very high-resolution image of subset.
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With satellite-derived, high-resolution drought estimates, the GA-MSVDI enables policymakers to make better decisions for 
effective water allocation and saving. Its integration into national drought monitoring networks can provide early warning systems, 
allowing the authorities to implement proactive steps for the mitigation of agricultural losses and water deficits. The ability of GA- 
MSVDI to detect spatiotemporal variations in drought can make it an invaluable resource for the enhancement of irrigation 

Fig. 11. Drought map at El Kairouan and its environs in Tunisia (a) Jan to Mar (b) Apr to Jun (c) Jul to Sep (d) Oct to Dec (i) subset Jan to Mar (ii) 
subset Apr to Jun (iii) subset Jul to Sep (iv) subset Oct to Dec (v) google earth very high-resolution image of subset.
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techniques, crop yield optimization, and empowering climate adaptation policy. Agriculturally, farmers can use this index to enhance 
water use efficiency, minimize yield loss, and adopt sustainable agricultural production strategies responsive to real-time drought 
conditions. Furthermore, the responsiveness of GA-MSVDI makes it compatible with conventional hydrological models and early 
warning systems, giving added strength to desertification control campaigns and food scarcity in vulnerable regions. Through bridging 
the gap between policy practice in the real world and remote sensing technology, GA-MSVDI can become a platform on which sus-
tainable management of drought can occur, ensuring decision-makers are equipped with the capabilities required to reduce climate 
risks and ensure agricultural productivity.

Fig. 12. Drought map Rabat-Salé-Kénitra in Morocco (a) Jan to Mar (b) Apr to Jun (c) Jul to Sep (d) Oct to Dec (i) subset Jan to Mar (ii) subset Apr 
to Jun (iii) subset Jul to Sep (iv) subset Oct to Dec (v) google earth very high-resolution image of subset.
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However, despite these promising results, certain limitations must be acknowledged. One of the primary challenges lies in the 
variability of GA-MSVDI’s performance across different regions, as observed in the Rabat-Salé-Kénitra region of Morocco. The index’s 
slightly lower correlation during certain periods could be influenced by the complex interplay of climatic factors, land use, and 
agricultural practices that are not fully captured by the current set of indices. Satellite datasets have uncertainties underpinning by 
sensor calibration error and atmospheric perturbation, potentially affecting accuracy. Cloud cover creates issues for optical sensors like 
Sentinel-2 and Landsat-8, potentially causing data gaps, though Sentinel-1 SAR diminishes it somewhat. Temporal resolution in-
consistencies among sensors may affect consistency in drought monitoring, and ground-truth verification is constrained by paucity of 
meteorological observations in certain areas. Moreover, the Genetic Algorithm (GA) is computationally demanding, consuming large 
amounts of processing power, which could restrict real-time uses unless optimized for performance. Redressing these will further 
improve the reliability and scalability of GA-MSVDI.

Further studies ought to concentrate on improving the GA-MSVDI by incorporating additional environmental variables that may 
further enhance its accuracy and applicability across different climatic zones. The inclusion of more localized climatic data, such as soil 

Fig. 13. Precipitation rate at the three study areas, accessed on August 24, 2024, at climatemaps.romgens.com, (a) January, (b) May, (c) August, 
(d) November.

Fig. 14. Max temperature distribution at the three study areas, accessed on August 24, 2024, at climatemaps.romgens.com, (a) January, (b) May, 
(c) August, (d) November.
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temperature and humidity, could offer a more complex comprehension of the dynamics of drought. Additionally, expanding the 
validation process to include longer time series data and more diverse geographical regions will be essential for assessing the long-term 
reliability of the index. Exploring machine learning techniques to dynamically adjust the index weights based on real-time data could 
also enhance its adaptability and precision in drought monitoring.

4. Conclusion

GA-MSVDI presents a quantum leap in the effort of agricultural drought monitoring. With smart integration of high-resolution 
satellite data from S1, S2, and Landsat-8, the GA-MSVDI captures the synergy of soil moisture, vegetation health, and temperature 
that significantly tops the relevance criteria of any drought index. The optimization process, which assigns the most appropriate 
weights to each index, ensures that the GA-MSVDI is not only responsive to the unique climatic conditions of North Africa but also 
highly reliable across diverse agricultural landscapes.

The index’s performance, as validated against the VHI, underscores its robustness and precision, with strong correlations observed 
across different study regions. This validation, coupled with the index’s capacity to reflect real-time drought dynamics, marks a 
substantial improvement over traditional indices, offering a more nuanced and effective tool for drought management. GA-MSVDI is 
highly correlated with commonly applied drought indices (0.57–0.91), confirming its ability to measure drought severity precisely. Its 
robustness in different geographical settings, including Mediterranean and semi-arid environments, demonstrates its flexibility and 
reliability in different environments. By combining high-resolution satellite data (S1, S2, and Landsat-8) and Genetic Algorithm 
optimization, GA-MSVDI provides an improved drought monitoring system compared to traditional indices. Its ability to sense soil 
wetness, plant health, and temperatures makes it particularly valuable for precision agriculture so that efficient irrigation, pre-drought 
mitigation, and improved resource use in water-constrained environments can be achieved.

The GA-MSVDI belongs to some of the state-of-the-art powerful tools that promise a radical revolution in drought monitoring and 
management. With the capacity for high-resolution accuracy, it becomes an incredible tool in building agricultural resilience for food 
security in the face of an utterly unpredictable climate. The GA-MSVDI would, therefore, form one of the cornerstones in environ-
mental monitoring, critical for long-term planning and support of sustainable agriculture practices.
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González-Gómez, L., Intrigliolo, D.S., Rubio-Asensio, J.S., Buesa, I., Ramírez-Cuesta, J.M., 2022. Assessing almond response to irrigation and soil management 

practices using vegetation indexes time-series and plant water status measurements. Agric. Ecosyst. Environ. 339, 108124. https://doi.org/10.1016/j. 
agee.2022.108124.

Hao, Z., AghaKouchak, A., 2014. A nonparametric multivariate multi-index drought monitoring framework. J. Hydrometeorol. 15, 89–101. https://doi.org/10.1175/ 
JHM-D-12-0160.1.

Hao, Z., Singh, V.P., 2015. Drought characterization from a multivariate perspective: a review. J. Hydrol. 527, 668–678. https://doi.org/10.1016/j. 
jhydrol.2015.05.031.

Hao, C., Zhang, J., Yao, F., 2015. Combination of multi-sensor remote sensing data for drought monitoring over Southwest China. Int. J. Appl. Earth Obs. Geoinf. 35, 
270–283. https://doi.org/10.1016/j.jag.2014.09.011.

Hayes, M., Svoboda, M., Wall, N., Widhalm, M., 2011. The lincoln declaration on drought indices: Universal meteorological drought index recommended. Bull. Am. 
Meteorol. Soc. 92 (1), 485–488. https://doi.org/10.1175/2010BAMS3103.

Hayes, M.J., Svoboda, M.D., Wardlow, B.D., Anderson, M.C., Kogan, F., 2012. Drought Monitoring: Historical and Current Perspectives.
Hazaymeh, K., Hassan, Q.K., 2017. A remote sensing-based agricultural drought indicator and its implementation over a semi-arid region. Jordan. J. Arid Land 9, 

319–330. https://doi.org/10.1007/s40333-017-0014-6.
Heim, R.R.H., 2002. A Review of Twentieth- Century Drought Indices Used in the United States.
Holben, B.N., 1980. Spectral Assessment of Soybean Leaf Area and Leaf Biomass. PHOTOGRAMMETRIC ENGINEERING.
Huete, A.R., 1988. A Soil-Adjusted Vegetation Index (SAVI). Rem. Sens. Environ. 25, 295–309. https://doi.org/10.1016/0034-4257(88)90106-X.
Jiao, W., Zhang, L., Chang, Q., Fu, D., Cen, Y., Tong, Q., 2016. Evaluating an enhanced Vgetation Condition Index (VCI) based on VIUPD for drought monitoring in the 

continental United States. Remote Sens. 8, 224. https://doi.org/10.3390/rs8030224.
Jiao, W., Tian, C., Chang, Q., Novick, K.A., Wang, L., 2019. A new multi-sensor integrated index for drought monitoring. Agric. For. Meteorol. 268, 74–85. https://doi. 

org/10.1016/j.agrformet.2019.01.008.
Jin, S., Zhang, T., 2016. Terrestrial water storage anomalies associated with drought in Southwestern USA from GPS observations. Surv. Geophys. 37, 1139–1156. 

https://doi.org/10.1007/s10712-016-9385-z.
Jin, S., Wang, Q., Dardanelli, G., 2022. A review on multi-GNSS for earth observation and emerging applications. Remote Sens. 14, 3930. https://doi.org/10.3390/ 

rs14163930.
Jin, S., Camps, A., Jia, Y., Wang, F., Martin-Neira, M., Huang, F., Yan, Q., Zhang, S., Li, Z., Edokossi, K., Yang, D., Xiao, Z., Ma, Z., Bai, W., 2024. Remote sensing and 

its applications using GNSS reflected signals: advances and prospects. Satell Navig 5, 19. https://doi.org/10.1186/s43020-024-00139-4.
Kaiser, P., Buddenbaum, H., Nink, S., Hill, J., 2022. Potential of sentinel-1 data for spatially and temporally high-resolution detection of drought affected forest stands. 

Forests 13, 2148. https://doi.org/10.3390/f13122148.
Katoch, S., Chauhan, S.S., Kumar, V., 2021. A review on genetic algorithm: past, present, and future. Multimed. Tool. Appl. 80, 8091–8126. https://doi.org/10.1007/ 

s11042-020-10139-6.
Kaur, A., Sood, S.K., 2020. Cloud-Fog based framework for drought prediction and forecasting using artificial neural network and genetic algorithm. J. Exp. Theor. 

Artif. Intell. 32, 273–289. https://doi.org/10.1080/0952813X.2019.1647563.
Kogan, Felix N., 1995. Droughts of the late 1980s in the United States as derived from NOAA Polar-orbiting satellite data. Bull. Am. Meteorol. Soc. 76 (2), 655–668. 

https://doi.org/10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO.
Kogan, F.N., 1997. Global drought watch from space. Bull. Am. Meteorol. Soc. 78, 621–636. https://doi.org/10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO, 

2. 
Konno, T., Homma, K., 2023. Prediction of areal soybean lodging using a main stem elongation model and a soil-adjusted vegetation index that accounts for the ratio 

of vegetation cover. Remote Sens. 15, 3446. https://doi.org/10.3390/rs15133446.
Li, L., Cai, H., 2024. A comparative study of various drought indices at different timescales and over different record lengths in the arid area of Northwest China. 

Environ. Sci. Pollut. Res. 31, 25096–25113. https://doi.org/10.1007/s11356-024-32803-2.
Li, H., Yin, Y., Zhou, J., Li, F., 2024. Improved agricultural drought monitoring with an integrated drought condition index in Xinjiang. China. Water 16, 325. https:// 

doi.org/10.3390/w16020325.
Malakar, N.K., Hulley, G.C., 2016. A water vapor scaling model for improved land surface temperature and emissivity separation of MODIS thermal infrared data. 

Rem. Sens. Environ. 182, 252–264. https://doi.org/10.1016/j.rse.2016.04.023.
Mathivha, F., Mbatha, N., 2021. Comparison of long-term changes in non-linear aggregated drought index calibrated by MERRA–2 and NDII soil moisture proxies. 

Water 14, 26. https://doi.org/10.3390/w14010026.
Mbatha, N., Xulu, S., 2018. Time series analysis of MODIS-derived NDVI for the hluhluwe-imfolozi Park, South Africa: impact of recent intense drought. Climate 6, 95. 

https://doi.org/10.3390/cli6040095.
Mishra, A., Vu, T., Veettil, A.V., Entekhabi, D., 2017. Drought monitoring with Soil Moisture Active Passive (SMAP) measurements. J. Hydrol. 552, 620–632. https:// 

doi.org/10.1016/j.jhydrol.2017.07.033.
Moursy, M.A.M., ElFetyany, M., Meleha, A.M.I., El-Bialy, M.A., 2023. Productivity and profitability of modern irrigation methods through the application of on-farm 

drip irrigation on some crops in the Northern Nile Delta of Egypt. Alex. Eng. J. 62, 349–356. https://doi.org/10.1016/j.aej.2022.06.063.
Mullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., Gorelick, N., Reiche, J., 2021. Sentinel-1 SAR backscatter analysis ready data preparation 

in google earth engine. Remote Sens. 13, 1954. https://doi.org/10.3390/rs13101954.
Najibi, N., Jin, S., 2013. Physical reflectivity and polarization characteristics for snow and ice-covered surfaces interacting with GPS signals. Remote Sens. 5, 

4006–4030. https://doi.org/10.3390/rs5084006.
Pande, C.B., Moharir, K.N., Singh, S.K., Pham, Q.B., Elbeltagi, A. (Eds.), 2023. Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems. 

Springer Climate. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-031-19059-9. 
Palmer, W.C., 1965. Meteorological Drought. US Department of Commerce, Weather Bureau. 

N.A.M. Abdelrahim and S. Jin                                                                                                                                                                                      Remote Sensing Applications: Society and Environment 38 (2025) 101603 

17 

https://doi.org/10.1016/j.ecoleng.2016.06.110
https://doi.org/10.1016/j.jenvman.2016.10.050
https://doi.org/10.1007/978-3-030-41629-4
https://doi.org/10.21608/jesaun.2019.264927
https://doi.org/10.21608/jesaun.2019.264927
https://doi.org/10.3390/app112110104
https://doi.org/10.1016/j.rse.2003.07.002
https://doi.org/10.3390/w12030866
https://doi.org/10.21608/jesaun.2021.67949.1039
https://doi.org/10.21608/jesaun.2021.67949.1039
https://doi.org/10.1007/s11042-023-17167-y
https://doi.org/10.1016/j.agee.2022.108124
https://doi.org/10.1016/j.agee.2022.108124
https://doi.org/10.1175/JHM-D-12-0160.1
https://doi.org/10.1175/JHM-D-12-0160.1
https://doi.org/10.1016/j.jhydrol.2015.05.031
https://doi.org/10.1016/j.jhydrol.2015.05.031
https://doi.org/10.1016/j.jag.2014.09.011
https://doi.org/10.1175/2010BAMS3103
http://refhub.elsevier.com/S2352-9385(25)00156-9/sref51
https://doi.org/10.1007/s40333-017-0014-6
http://refhub.elsevier.com/S2352-9385(25)00156-9/sref53
http://refhub.elsevier.com/S2352-9385(25)00156-9/sref54
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.3390/rs8030224
https://doi.org/10.1016/j.agrformet.2019.01.008
https://doi.org/10.1016/j.agrformet.2019.01.008
https://doi.org/10.1007/s10712-016-9385-z
https://doi.org/10.3390/rs14163930
https://doi.org/10.3390/rs14163930
https://doi.org/10.1186/s43020-024-00139-4
https://doi.org/10.3390/f13122148
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1080/0952813X.2019.1647563
https://doi.org/10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO
https://doi.org/10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO
https://doi.org/10.3390/rs15133446
https://doi.org/10.1007/s11356-024-32803-2
https://doi.org/10.3390/w16020325
https://doi.org/10.3390/w16020325
https://doi.org/10.1016/j.rse.2016.04.023
https://doi.org/10.3390/w14010026
https://doi.org/10.3390/cli6040095
https://doi.org/10.1016/j.jhydrol.2017.07.033
https://doi.org/10.1016/j.jhydrol.2017.07.033
https://doi.org/10.1016/j.aej.2022.06.063
https://doi.org/10.3390/rs13101954
https://doi.org/10.3390/rs5084006
https://doi.org/10.1007/978-3-031-19059-9
http://refhub.elsevier.com/S2352-9385(25)00156-9/sref77


Pande, C.B., Egbueri, J.C., Costache, R., Sidek, L.M., Wang, Q., Alshehri, F., Din, N.M., Gautam, V.K., Chandra Pal, S., 2024. Predictive modeling of Land Surface 
Temperature (LST) based on Landsat-8 satellite data and machine learning models for sustainable development. J. Clean. Prod. 444, 141035. https://doi.org/ 
10.1016/j.jclepro.2024.141035.

Pei, F., Wu, C., Liu, X., Li, X., Yang, K., Zhou, Y., Wang, K., Xu, L., Xia, G., 2018. Monitoring the vegetation activity in China using vegetation health indices. Agric. For. 
Meteorol. 248, 215–227. https://doi.org/10.1016/j.agrformet.2017.10.001.

Pervez, M.S., Brown, J.F., 2010. Mapping irrigated lands at 250-m scale by merging MODIS data and national agricultural statistics. Remote Sens. 2, 2388–2412. 
https://doi.org/10.3390/rs2102388.

Qin, Q., Wu, Z., Zhang, T., Sagan, V., Zhang, Z., Zhang, Y., Zhang, C., Ren, H., Sun, Y., Xu, W., Zhao, C., 2021. Optical and thermal remote sensing for monitoring 
agricultural drought. Remote Sens. 13, 5092. https://doi.org/10.3390/rs13245092.

Quiring, S.M., Ganesh, S., 2010. Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agric. For. Meteorol. 
150, 330–339. https://doi.org/10.1016/j.agrformet.2009.11.015.

Razavi-Termeh, S.V., Sadeghi-Niaraki, A., Seo, M., Choi, S.-M., 2023. Application of genetic algorithm in optimization parallel ensemble-based machine learning 
algorithms to flood susceptibility mapping using radar satellite imagery. Sci. Total Environ. 873, 162285. https://doi.org/10.1016/j.scitotenv.2023.162285.

Ren, J., Shao, Y., Wan, H., Xie, Y., Campos, A., 2021. A two-step mapping of irrigated corn with multi-temporal MODIS and Landsat analysis ready data. ISPRS J. 
Photogrammetry Remote Sens. 176, 69–82. https://doi.org/10.1016/j.isprsjprs.2021.04.007.

Rhyma, P.P., Norizah, K., Hamdan, O., Faridah-Hanum, I., Zulfa, A.W., 2020. Integration of normalised different vegetation index and Soil-Adjusted Vegetation Index 
for mangrove vegetation delineation. Remote Sens. Appl.: Soc. Environ. 17, 100280. https://doi.org/10.1016/j.rsase.2019.100280.

Sakellariou, S., Spiliotopoulos, M., Alpanakis, N., Faraslis, I., Sidiropoulos, P., Tziatzios, G.A., Karoutsos, G., Dalezios, N.R., Dercas, N., 2024. Spatiotemporal drought 
assessment based on gridded Standardized Precipitation Index (SPI) in vulnerable agroecosystems. Sustainability 16, 1240. https://doi.org/10.3390/ 
su16031240.

Salem, S., Gaagai, A., Ben Slimene, I., Moussa, A., Zouari, K., Yadav, K., Eid, M., Abukhadra, M., El-Sherbeeny, A., Gad, M., Farouk, M., Elsherbiny, O., Elsayed, S., 
Bellucci, S., Ibrahim, H., 2023. Applying multivariate analysis and machine learning approaches to evaluating groundwater quality on the Kairouan Plain, 
Tunisia. Water 15, 3495. https://doi.org/10.3390/w15193495.
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Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation 
evapotranspiration index. J. Clim. 23, 1696–1718. https://doi.org/10.1175/2009JCLI2909.1.

Wable, P.S., Jha, M.K., Shekhar, A., 2019. Comparison of drought indices in a semi-arid river basin of India. Water Resour. Manag. 33, 75–102. https://doi.org/ 
10.1007/s11269-018-2089-z.

West, H., Quinn, N., Horswell, M., 2019. Remote sensing for drought monitoring & impact assessment: progress, past challenges and future opportunities. Rem. Sens. 
Environ. 232, 111291. https://doi.org/10.1016/j.rse.2019.111291.

Winkler, K., Gessner, U., Hochschild, V., 2017. Identifying droughts affecting agriculture in Africa based on remote sensing time series between 2000–2016: rainfall 
anomalies and vegetation condition in the context of ENSO. Remote Sens. 9, 831. https://doi.org/10.3390/rs9080831.

Wu, J., 2013. Establishing and assessing the Integrated Surface Drought Index (ISDI) for agricultural drought monitoring in mid-eastern China. Int. J. Appl. Earth Obs. 
Geoinf. 126, 225–244. https://doi.org/10.1016/j.isprsjprs.2017.01.019.

Yao, N., Zhao, H., Li, Y., Biswas, A., Feng, H., Liu, F., Pulatov, B., 2020. National-Scale Variation and Propagation Characteristics of Meteorological, Agricultural, and 
Hydrological Droughts in China.

Zekri, S. (Ed.), 2020. Water Policies in MENA Countries, Global Issues in Water Policy. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030- 
29274-4. 

Zhang, A., Jia, G., 2013. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Rem. Sens. Environ. 134, 12–23. 
https://doi.org/10.1016/j.rse.2013.02.023.

Zhang, N., Hong, Y., Qin, Q., Liu, L., 2013. VSDI: a visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote 
sensing. Int. J. Rem. Sens. 34, 4585–4609. https://doi.org/10.1080/01431161.2013.779046.

Zhang, X., Chen, N., Li, J., Chen, Z., Niyogi, D., 2017. Multi-sensor integrated framework and index for agricultural drought monitoring. Rem. Sens. Environ. 188, 
141–163. https://doi.org/10.1016/j.rse.2016.10.045.

Zhou, L., Wu, J., Zhang, Jianhui, Leng, S., Liu, M., Zhang, Jie, Zhao, L., Zhang, F., Shi, Y., 2013. The Integrated Surface Drought Index (ISDI) as an indicator for 
agricultural drought monitoring: theory, validation, and application in mid-Eastern China. In: Sel. Top. Appl. Earth Observations Remote Sensing, vol. 6. IEEE, 
pp. 1254–1262. https://doi.org/10.1109/JSTARS.2013.2248077.

N.A.M. Abdelrahim and S. Jin                                                                                                                                                                                      Remote Sensing Applications: Society and Environment 38 (2025) 101603 

18 

https://doi.org/10.1016/j.jclepro.2024.141035
https://doi.org/10.1016/j.jclepro.2024.141035
https://doi.org/10.1016/j.agrformet.2017.10.001
https://doi.org/10.3390/rs2102388
https://doi.org/10.3390/rs13245092
https://doi.org/10.1016/j.agrformet.2009.11.015
https://doi.org/10.1016/j.scitotenv.2023.162285
https://doi.org/10.1016/j.isprsjprs.2021.04.007
https://doi.org/10.1016/j.rsase.2019.100280
https://doi.org/10.3390/su16031240
https://doi.org/10.3390/su16031240
https://doi.org/10.3390/w15193495
https://doi.org/10.3390/rs8040287
http://refhub.elsevier.com/S2352-9385(25)00156-9/sref90
http://refhub.elsevier.com/S2352-9385(25)00156-9/sref90
https://doi.org/10.1007/s10113-020-01597-7
https://doi.org/10.1007/978-94-007-6636-5
https://doi.org/10.3390/rs13112059
https://doi.org/10.1080/19475705.2015.1016555
https://doi.org/10.5194/hess-20-3361-2016
https://doi.org/10.1080/17538947.2019.1572799
https://doi.org/10.1007/978-3-642-42027-6
https://doi.org/10.1016/j.isprsjprs.2018.07.017
https://doi.org/10.1080/01431169408954050
https://doi.org/10.1080/01431169408954050
https://doi.org/10.1016/j.agrformet.2017.11.024
https://doi.org/10.1080/15481603.2017.1287838
https://doi.org/10.1002/joc.6557
https://doi.org/10.3390/rs10091482
https://doi.org/10.3390/rs10091482
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1007/s11269-018-2089-z
https://doi.org/10.1007/s11269-018-2089-z
https://doi.org/10.1016/j.rse.2019.111291
https://doi.org/10.3390/rs9080831
https://doi.org/10.1016/j.isprsjprs.2017.01.019
http://refhub.elsevier.com/S2352-9385(25)00156-9/sref109
http://refhub.elsevier.com/S2352-9385(25)00156-9/sref109
https://doi.org/10.1007/978-3-030-29274-4
https://doi.org/10.1007/978-3-030-29274-4
https://doi.org/10.1016/j.rse.2013.02.023
https://doi.org/10.1080/01431161.2013.779046
https://doi.org/10.1016/j.rse.2016.10.045
https://doi.org/10.1109/JSTARS.2013.2248077

	Genetic Algorithm Optimized Multispectral Soil-Vegetation Drought Index (GA-MSVDI) for precision agriculture and drought mo ...
	1 Introduction
	2 Materials and methods
	2.1 Study areas
	2.2 Data acquisition
	2.3 Methodology
	2.3.1 Remote sensing indices
	2.3.1.1 Normalized Difference Vegetation Index NDVI
	2.3.1.2 Soil Adjusted Vegetation Index SAVI
	2.3.1.3 Normalized Difference Infrared Index NDII
	2.3.1.4 Land Surface Temperature LST
	2.3.1.5 Soil Moisture Index SMI

	2.3.2 Genetic Algorithm (GA) Optimization
	2.3.3 Validation and performance assessment of GA-MSVDI


	3 Results and discussions
	3.1 GA-MSVDI equation
	3.2 Validation
	3.3 Drought maps
	3.4 Analysis
	3.5 Discussion

	4 Conclusion
	CRediT authorship contribution statement
	Ethical statement
	Funding
	Declaration of competing interest
	Acknowledgement
	Data availability
	References


