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ABSTRACT

Drought remains the most widespread and debilitating climate hazard in Africa, which threatens food safety and
socio-ecological stability across the continent. Traditional drought monitoring systems, however, typically never
register the dynamic evolution of drought episodes, which can extend between areas and amplify effects
downstream. This study proposes a new Multivariate Drought Index Fusion (MDIF) that, apart from merging
different drought indicators, mainly tracks the spatiotemporal trajectory of mobile drought fronts across Africa
from 2000 to 2024. Avoiding the shortcomings of static drought maps, this approach offers a dynamic presen-
tation of drought propagation patterns required for timely warning and management. Through the use of
Principal Component Analysis (PCA), MDIF integrates multiple drought indicators, Normalized Difference
Vegetation Index (NDVI), Land Surface Temperature (LST), precipitation, Standardized Precipitation-
Evapotranspiration Index (SPEI), and Vegetation Health Index (VHI), into a fused, highly reliable,
meteorological-ecological sensitivity drought index. The MDIF exhibited significant correlations with SPI-3 (r =
0.72-0.84), particularly across arid and semi-arid regions, and with VHI (r = 0.76-0.87), further underscoring its
robustness in capturing both meteorological and ecological drought conditions. The findings indicate the Horn of
Africa as a long-term drought hotbed, with severe events during 2006, 2011, 2017-2019, and 2022-2023, while
Southern Africa experienced severe multi-year droughts from 2014 to 2017. Our tracking analysis, for the first
time, indicates a dominant northeast-to-southwest trajectory of drought fronts over sub-Saharan Africa. This
research enhances continental drought early warning through dynamic mapping of intensity and mobility for
resilience planning.

1. Introduction

Major ocean-atmosphere teleconnections intricately interact to
control drought regimes over Sub-Saharan Africa. A coupled Atlantic

Drought remains one of the most devastating natural disasters in the
world, and it has significant effects on ecosystems, agricultural yields,
water resources, and human lives (Abdelrahim and Jin, 2025a; Ssem-
bajwe et al., 2025). The Sahel, southern Africa, and the Horn of Africa
regions, in particular, have been confronted with recurring drought
emergencies leading to loss of crops, hunger, and internal displacement
of individuals (Lambert et al., 2016; Samasse et al., 2020; Tong et al.,
2020; Hassan and Jin, 2016). Against the backdrop of these acute
socio-economic as well as environmental necessities, it is a priority on
the agendas of national and global policymaking (FAO, 2023; Mishra
and Singh, 2010).
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Multidecadal Oscillation (AMO) and Southern Oscillation Index (SOI)
accounts for up to 43 % of West African drought variability (Ogunrinde
et al., 2024). Drought events are intensified and made more spatially
heterogenized through West African Monsoon system changes and
land-atmosphere feedbacks (Heiss et al., 2025; Samasse et al., 2018).
Another level of complexity is introduced by compound droughts, which
occur together with heat waves and precipitation shortage. Han et al.
(2022) concluded from a 2016-2017 Horn of Africa drought study that it
was a 250-year event where small rainfall deficits were augmented by
record (+1.02 °C) temperatures to enhance moisture stress, echoing
global-scale behavior observed in California.
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Single-index measures like the Standardized Precipitation Index
(SPI) and the Standardized Precipitation Evapotranspiration Index
(SPEI), controlled by atmospheric water deficits, are the backbone of
traditional drought observation (Chere and Debalke, 2024; Dong et al.,
2023). These indices are useful in hydrologic research but do not pro-
vide the complete picture of agricultural droughts where surface energy
fluxes, vegetation response, and soil moisture deficit are of equal
importance (Esfahanian et al., 2017). According to Chere and Debalke
(2024) and Bento et al. (2018), single-index or single-sensor methods
cannot identify initial stress in vegetation before the onset of symptoms.

Remote sensing has revolutionized drought monitoring through
enabling large-scale repetitive surveillance of vegetation condition, land
surface temperature (LST), and soil moisture proxies (Abdelrahim and
Jin, 2025a; Jia et al., 2020; Jin et al., 2017; Jin et al., 2025; Mostafa
et al., 2021). Vegetation indices such as the Normalized Difference
Vegetation Index (NDVI) (Adhikari et al., 2024; Bento et al., 2020), the
Vegetation Health Index (VHI) (Chere and Debalke, 2024; Kogan, 1995),
and soil-adjusted vegetation indices (Huete, 1988; Konno and Homma,
2023) have been widely used to detect vegetation stress. Bento et al.
(2020) demonstrated the synergistic function of NDVI and LST in the
context of VHI, particularly in dryland environments. Most recent
research has also employed radar (SAR) and GNSS-Reflectometry data to
estimate soil moisture, further contributing to the bountiful drought
detection toolkit (Edokossi et al., 2020; Jin et al., 2024a,b). Machine
learning methods, including self-organizing maps (Céréghino and Park,
2009; Iyer and Krishnan, 2024), random forests, and deep learning ap-
proaches (Choukri et al., 2024; Luo et al., 2024), have been proposed to
integrate these multi-sensor observations into composite drought as-
sessments with greater accuracy (Jiao et al., 2019; Kulkarni et al., 2020).
Though numerous remote sensing-based drought monitoring methods
are still centered on static severity classification or pixel-based temporal
anomalies, the latest developments have increasingly attempted to
replicate drought dynamics. Studies using GRACE-based water storage
anomalies (Ali et al., 2023; Elameen et al., 2023), soil moisture anomaly
monitoring (Ajaz et al., 2019; Alasow et al., 2024), and time-lagged
vegetation indexes (Liu et al., 2021; Nigatu et al., 2024) are valuable
contributions toward the characterization of drought propagation.
However, there are not many models to dynamically monitor mobile
drought fronts on a large scale.

Despite these successes, there are some gaps in drought monitoring
literature. While single-index approaches remain prevalent, multi-index
and multi-source designs are increasingly becoming popular (e.g., SPEIL,
SSMI, and CHIRPS-based hybrids) (Palagiri and Pal, 2024; You et al.,
2025), and regional/global systems such as the U.S. Drought Monitor
(USDM) (Yin and Zhang, 2023) demonstrate successful operational
fusion (Hao and Singh, 2015; Pozzi et al., 2013). Nonetheless, there
remain challenges in creating uniform, transferable multivariate fusion
models for continental-scale operational drought monitoring, especially
in Africa. Similarly, while numerous studies have investigated drought
propagation owing to soil moisture memory, plant stress, and lagged
climate signals (Beyene et al., 2023; Bilal and Gupta, 2024; Gorugantula
et al., 2025), methods to operationally detect and monitor propagating
drought fronts at large spatial scales remain lacking. Second, multi-
sensor data fusion, while promising (Du et al., 2013; Jiao et al., 2019),
lacks universal consensus about the most adequate approaches for
optimal fusion strategies, particularly for operational agricultural
drought monitoring in Africa. Third, while significant advancements
have been made in describing the spatiotemporal dynamics of drought
propagation, particularly through the application of three-dimensional
(3D) approaches to drought identification (Feng et al., 2025; Yoo
et al., 2022), a matter of significant importance but less debated is the
dynamic monitoring of drought fronts—drought’s progression and ag-
gregation over landscapes as an evolving process (Bento et al., 2018;
Brandt et al., 2016). Whereas station-based conditions are diagnosed by
drought indices, attempts to dynamically track drought fronts, defining
their speed, direction, and migration pathways, particularly at the
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continental scale in Sub-Saharan Africa, have been sparse.

To this end, this paper aims to bridge these gaps with a twin inno-
vation: (1) developing a Multivariate Drought Index Fusion (MDIF)
based on PCA (A. Farrag et al., 2020; Abdelrahim and Jin, 2025b) to fuse
and integrate principal drought variables from multi-source remote
sensing and climate archives. and (2) the first continent-scale algo-
rithmic surveillance of mobile drought fronts, their density, velocity,
and dominant directions of propagation across Africa. We selected
NDVI, LST, precipitation, SPEI, and VHI as surrogate drought indicators.
NDVI and VHI indicate vegetation response (Adhikari et al., 2024; Zeng
et al., 2023), LST indicates evapotranspiration and surface heat stress,
and precipitation and SPEI indicate meteorological water deficits (Dong
etal., 2023; Rahimi et al., 2025). Together, these variables indicate both
ecosystem impacts and hydroclimatic drivers. For integration purposes,
we used the PCA, which is a popular method that reduces dimensionality
and extracts the dominant drought signal in correlated data (Schwartz
et al., 2022). Using connected component analysis and vector tracking
algorithms on them, we calculate the velocity (km/month), direction
(degrees), and distance (km) of the movement of drought front in Africa.
Such active monitoring offers valuable information for enabling antici-
pation of subsequent drought impacts before their complete develop-
ment. Importantly, the methodological contribution of this paper lies in
its use of MDIF to enable the first continent-scale monitoring of mobile
drought fronts in Africa. By leveraging the integration and propagation
analysis, we go beyond the traditional anomaly-based monitoring to
detect the changing trajectories of drought across space and time.

The main objectives of this study are to: (1) Develop a multivariate
drought index by combining a number of remote sensing and climatic
indicators using PCA; (2) Compare the proposed MDIF index with the
globally accepted SPI, and VHI in correlation and time series comparison
measures; (3) Track drought front dynamics across Africa for the years
2000-2024, quantifying their spatiotemporal characteristics (speed,
direction, distance); and (4) Analyze the long-term trends and persistent
corridors of drought propagation by aid of statistical and spatial analysis
techniques. The innovation of this study is the coupling of multi-sensor
index fusion and dynamic front tracking of droughts, underpinned by 25
years of monthly remote sensing data over the complete Sub-Saharan
Africa region. This study moves from static monitoring of drought to
dynamic propagation analysis and provides new scientific understand-
ing of the dynamics of droughts as moving phenomena immediately
relevant to agricultural management, water resource planning, and
climate change adaptation strategies in Africa and elsewhere. The rest of
this paper shows materials and methods in Section 2, Section 3 presents
results, analysis and discussions, and finally the conclusion is given at
Section 4.

2. Materials and methods
2.1. Study areas

This study spans the entire African continent (Fig. 1), covering more
than 30 million km? and home to over 1.4 billion people, with climatic
and ecological conditions ranging from hyper-arid deserts to humid
tropics and temperate zones (Abdelrahim and Jin, 2025c). The Sahara
prevails in North Africa, where rainfall amounts are below 100 mm per
year, restricted to irrigated Nile and Mediterranean regions. To the south
of the desert is the Sahel, which is sustained by summer rains
(June-September) favoring millet, sorghum, and livestock, though it is
very arid (FAO, 2022; Samasse et al., 2018).

West Africa is experiencing a bimodal rainfall regime along the Gulf
of Guinea (1,200-2,500 mm per year), with which cocoa, cassava, and
oil palm are sustained. Central Africa, dominated by the Congo Basin,
has over 2,000 mm of rainfall, supporting tropical rainforests and sub-
sistence crops of cassava, plantains, and maize. East Africa is more
climatically variable, notably in the Horn, where bimodal wet seasons
govern agriculture but are often disrupted by ENSO and IOD anomalies,
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Fig. 1. The map illustrates the African continent, Panel (a) displays the topographic variation across Africa, emphasizing key regions such as the Ethiopian Highlands
and the Congo Basin. Panel (b) illustrates land cover types (e.g., forests, savannas, deserts) derived from MODIS MCD12Q1 data, highlighting agriculturally relevant

zones masked for drought analysis.

which create recurring droughts (Zeng et al., 2023).

Southern Africa is characterized by a unimodal regime of summer
rainfall (500-1,200 mm per year) favoring maize, soybean, and sugar-
cane but frequently affected by severe meteorological droughts, like in
Zimbabwe and South Africa (Han et al., 2022). Such diverse climatic
regimes, coupled with excess reliance on rainfed agriculture and uneven
governance capacity, make Africa highly vulnerable to compound and
complex drought events. Controlling drought hazard at the continental
scale therefore requires approaches that can encapsulate the heteroge-
neity of the continent’s multi-ecological and multi-climatic nature. Cli-
matic characteristics of the major zones treated in this study are shown
in Table 1 (Abdelrahim and Jin, 2025c).

2.2. Data

To monitor and analyze drought situation across the African conti-
nent from 2000 to 2024, this study integrates a set of remotely sensed
and climatic-based data that provide extensive coverage of both vege-
tation response and hydroclimatic drivers. Five key variables were
selected: The NDVI, LST, Precipitation, SPEL, and VHI. Spatiotemporal
analysis of drought development in detail is facilitated by the gridded
spatial and monthly temporal resolution of all data sets.

MODIS MOD13Q1 NDVI is widely accepted as a measure of natural
ecosystem and agricultural wet stress sensitivity, and it is used as a proxy
for photosynthesis and vegetation condition (Huang et al., 2021; Pala-
giri and Pal, 2024). LST, derived from MODIS MOD11Az2, is a measure of
land surface temperature and a reliable indicator of evapotranspiration
anomalies, which are reported to be higher in instances of drought
(Alexander, 2020; Khorrami and Gunduz, 2020). Precipitation estimates
were taken from the Climate Hazards Group InfraRed Precipitation with
Station (CHIRPS) dataset, which merges satellite and station data to

provide accurate rainfall estimates across Africa’s diverse landscapes
(Adloff et al., 2022; Khorrami et al., 2024).

The SPEI was used in this study to detect climatic conditions of
dryness across the African continent. In this work, data from SPEI at a 3-
month timescale (SPEI-3) was used, which satisfactorily characterizes
seasonally based moisture shortages that contribute to crop productivity
and vegetation vigor (Dong et al., 2023; He et al., 2024). 3-month scale
is a balance of short-term meteorological drought indices and longer
hydrological stress, hence a perfect choice for agricultural drought
monitoring (Hasan and Abdullah, 2023). SPEI data were retrieved from
the SPEIbase v2.7 database, with the 2000-2024-time frame and a
spatial resolution of 0.5° (~50 km). This data fusion approach from
multiple sources provides a solid foundation on which to establish a
continental-scale integrated drought monitoring system that portrays
both ecosystem response and climatic forcing (Jiao et al., 2019). Table 2
presents the data characteristics.

2.3. Methodology

The study uses a rigorous, multi-stage methodology to detect and
monitor mobile drought fronts across the African continent from 2000 to
2024. The approach is divided into four major stages: harmonization
and preprocessing of data, computation of the Multivariate Drought
Index Fusion (MDIF), drought detection using the fused index, and
drought front advances and dynamics monitoring as shown in Fig. 2.

2.3.1. Data preprocessing

Given the multi-source origin of the datasets, the initial step was a
preliminary preprocessing step to ensure spatial and temporal homo-
geneity. The input datasets NDVI, LST, precipitation, VHI, and SPEI were
all re-sampled to a consistent spatial resolution of 0.1° (~10 km), as best
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Table 1
The main climatic features and crop systems across Africa’s five major sub-
regions.

Region Climate Type Main Rainfall (mm/  Drought
Crops year) Vulnerability
North Predominantly Wheat, Less than 100 High, driven by
Africa arid and semi- barley, mm in the persistent water
arid, with olives, Sahara; scarcity and
Mediterranean dates 200-600 mm advancing
influence along in coastal desertification
the coast zones
West Humid tropical Cocoa, oil 1,200-2,500 Moderate,
Africa climate with a palm, mm though long-
(Guinea  bimodal rainfall cassava term rainfall
Coast) pattern reductions have
heightened
drought
sensitivity
Sahel Semi-arid, Millet, 200-600 mm Very high, with
(West governed by sorghum, a history of
Africa) seasonal livestock devastating
monsoon rains drought
episodes such as
those of the
1980 s
East Semi-arid to sub- Maize, tea, 300-1,200 Very high, with
Africa humid with two coffee mm recurrent
(Horn rainy seasons droughts linked
& Rift to ENSO and
Valley) Indian Ocean
Dipole, e.g.,
2016-2017
Central Equatorial Cassava, 1,500-2,500 Low overall, but
Africa rainforest plantains, mm susceptible to
(Congo climate with maize occasional short
Basin) year-round dry spells
humidity
Southern Semi-arid to sub-  Maize, 500-1,200 High, marked
Africa humid, soybeans, mm by recent severe
characterized by sugarcane droughts such
a unimodal as the

2015-2016 El
Nino-related
event

summer rainfall
regime

practice in continental drought monitoring (Dibs et al., 2023; Ni et al.,
2022). The original 16-day and 8-day composites of MODIS-based NDVI
and LST data were combined to create monthly means. The monthly
timescales were also used to average the weekly NOAA STAR VHI
product (Garcia et al., 2016; Patil and Dubey, 2017). To account for the
seasonality of drought variability associated with agricultural impacts,
SPEI was applied at the 3-month scale (SPEI-3) (Liu et al., 2021; Vicente-
Serrano et al., 2010). For continuous variables such as NDVI, LST, SPEIL,
VHI, and reprojection of CHIRPS precipitation data, bilinear
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interpolation (Iman Bin Hussain et al., 2025; Kian Kee Teoh et al., 2008)
was applied to ensure spatial consistency and preserve the continuous
nature of the data during resolution harmonization (Khorrami et al.,
2024; Wu et al., 2019). For uniformity, all datasets were reprojection to
WGS84 (EPSG:4326) coordinate system. Non-vegetation surface mask-
ing (water surface, urban, barren) was done in this step using MODIS
MCD12Q1 land cover classification (Brandt et al., 2016), thus focusing
analysis on agriculturally suitable and vegetated surface only. This
harmonization routine produced monthly raster stacks for each variable,
spatially and temporally consistent over the course of the study.

2.3.2. Multivariate drought Index Fusion (MDIF)

In order to synthesize the drought indications from a mix of in-
dicators, a Multivariate Drought Index Fusion (MDIF) was developed
through Principal Component Analysis (PCA) (Abdi and Williams, 2010;
Kulkarni et al., 2020) of the preprocessed variables: NDVI, LST, pre-
cipitation, SPEL, and VHI. PCA is a widely recognized dimension
reduction technique that transforms the variables correlated into un-
correlated principal components, which capture the maximum amount
of variance (Esfahanian et al., 2017; Li, 2024). PCA was selected for
MDIF due to its robustness, interpretability, and speed of computation,
particularly for analysis at the continental scale spanning 25 years. PCA
is efficient in lowering dimensionality as well as objectively integrating
several indicators of drought by defining the dominant modes of vari-
ability (Li, 2024; Schwartz et al., 2022). While PCA assumes linearity
among variables and does not always replicate complex nonlinear
drought-climate interactions and composite events (e.g., heatwave—
drought events), it produces an interpretable and unique composite
drought signal that is crucial for operational surveillance.

Drought-relevant monthly raster stacks were constructed by pixel-
wise stacking the five variables after normalizing them to standard
scales (z-scores). PCA was then calculated pixel-wise both in space and
time, with the first principal component (PC1) of maximum variance
interpreted as the composite drought stress index (MDIF) (A. Farrag
et al., 2020; Abdelrahim and Jin, 2025b). This combined index in-
tegrates meteorological drought (SPEIL, precipitation), vegetation stress
(NDVI, VHI), and thermal moisture stress (LST) and therefore overcomes
natural limitations of single-variable drought indices (Li et al., 2024).
Separate PCA calculations were conducted for each month to maintain
temporal specificity, resulting in a monthly MDIF product for the entire
study period. Validation of the MDIF index was conducted by comparing
its outputs with VHI and the 3-month Standardized Precipitation Index
(SPI-3), computed directly from precipitation data using R Studio. Pre-
cipitation data for SPI-3 calculation were used from the CHIRPS dataset
(0.05° resolution, monthly) to ensure consistency between the precipi-
tation inputs used within the MDIF framework (Hasan and Abdullah,
2022; Ho et al., 2021). To both spatially and temporally align the two
indices, the SPI-3 was upscaled to 0.1° resolution by using bilinear

Table 2
Datasets and Remote Sensing Sources Used for Multivariate Drought Index Fusion (MDIF).
Variable Dataset Name Spatial Resolution Temporal Period Covered Source
Resolution
NDVI (Normalized Difference MODIS MOD13Q1 250 m (resampled to 0.1°) 16-day 2000-2024 NASA LP DAAC
Vegetation Index) (aggregated MODIS MOD13Q1
monthly)
LST (Land Surface Temperature) MODIS MOD11A2 1 km (resampled to 0.1°) 8-day (aggregated  2000-2024 NASA LP DAAC
monthly) MODIS MOD11A2
Precipitation CHIRPS (Climate Hazards Group  0.05° (~5 km) Monthly 1981-present CHIRPS Data
InfraRed Precipitation with Portal
Station)
SPEI (3-month scale) (Standardized SPEIbase v2.7 (3-month 0.5° (~50 km) Monthly (3-month ~ 1901-2021 (recent SPEI Official
Precipitation Evapotranspiration aggregation) scale) updates to 2023) Website
Index)
VHI (Vegetation Health Index) NOAA STAR VHI 4 km (aggregated to Weekly 1981-2024 NOAA STAR VHI
monthly&resampled to 0.1°) (aggregated Download
monthly)
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Fig. 2. Workflow Diagram Illustrating the MDIF Development and Drought Front Tracking Methodology.

interpolation and synchronized to the MDIF monthly time steps
(2000-2024).

2.3.3. Drought detection using the fused MDIF Index

Following the calculation of the MDIF index, monthly drought status
was determined through the application of a threshold-based classifi-
cation directly on the MDIF values. MDIF values falling below the 60th
percentile was classified as drought-affected pixels, in line with standard
drought mapping conventions using percentile ranks (Bhuyan-Erhardt
et al., 2019; Hao and Singh, 2015). The threshold was chosen to capture
moderate-to-severe drought status and avoid minor seasonal variability.
Binary drought masks (1 = drought, 0 = non-drought) were generated
for each month, developing a 300-month raster series for 2000-2024.
Single drought patches with an area smaller than 1,000 km? were
eliminated by using connected component analysis in order to retain
only significant drought areas to be tracked (Chere and Debalke, 2024;
Dalezios et al., 2012). This step converted the continuous MDIF outputs
into discrete drought event layers, which are suitable for spatiotemporal
movement analysis.

2.3.4. Tracking mobile drought fronts

The drought front tracking method operates on spatially contiguous
drought clusters from MDIF monthly classifications. The “drought front”
refers to a drought-affected contiguous region of pixels (>1,000 km?)
that are classified as moderate-to-extreme drought (MDIF < 60th
percentile). The minimum area criterion was implemented to remove
local noise and spurious observations that are common in remote
sensing data so that the events extracted are meaningful and spatially
consistent drought events. Furthermore, this criterion focuses the anal-
ysis on big-weather patterns of large-scale drought events of relevance to
continental-scale monitoring and regional impact estimation, enhancing
computational efficiency and tractability for the 25 years over Africa.
The fronts are characterized by using a Connected Component Labeling
(CCL) algorithm, consolidating the neighboring drought pixels into
separate clusters. To track movement, clusters are linked between
adjacent months under two conditions: (1) proximity (centroids < 200
km) and (2) intersecting area (>20 % spatial overlap). These thresholds
suppress spurious linkages without suppressing gradual drought
migration patterns.

Movement velocity and direction are calculated from displacement
of affiliated cluster centroids. Velocity (km/month) is the great-circle
distance between centroids in month t and month t + 1 divided by the
time interval (1 month). Direction is calculated from the azimuth angle
between centroid coordinates, with north (0°-360°). For example, a
northeast-southwest trajectory would be ~ 225° azimuth. Centroid
movement over time allowed drought front speed and direction to be
calculated. While rapidly computable and good for the identification of
large-scale patterns of propagation at a continental scale, this method
has certain weaknesses. It is too naive regarding sophisticated drought
behavior, particularly when patches of drought coalesce, break apart, or
experience large-scale shape changes, because the centroid is not
necessarily representative of such intricate evolutions.

Drought fronts were identified empirically from grid cells that were
classified as drought using percentile-based MDIF thresholds (extreme
< 20th percentile, severe 20-40th, moderate 40-50th, and mild 50-
60th). Spatial co-aggregation of these drought-affected cells was sub-
sequently used to delineate drought clusters, centroids of which were
calculated to obtain the front centroids. Front displacement, velocity,
and direction were subsequently derived from the temporal path of these
centroids. Thus, the relationship of MDIF values and front properties is
not assumed but is a natural consequence of the spatiotemporal distri-
bution of MDIF anomalies. Local frequency of droughts is conveyed in
terms of density of drought fronts (number of fronts per pixel over
2000-2024), whereas speed and direction feed into propagation dy-
namics. MDIF values directly influence front characteristics: small MDIF
(extreme drought) results in larger, more persistent fronts, and sharp
MDIF declines (e.g., abrupt vegetation stress) could trigger more rapid
propagation. For instance, MDIF < 20th percentile (extreme drought)
often occur with fronts of speeds > 150 km/month in moisture-sensitive
regions like south Africa where the evaporative demand allows for
enhanced spread of drought.

3. Results and discussions
3.1. Development of Multivariate drought Index Fusion (MDIF)

To build the MDIF, we applied PCA to common monthly anomalies in
five most significant drought variables: NDVI, LST, Precipitation, SPEI,
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and VHI. These variables both capture vegetation response (NDVI, VHI),
atmospheric humidity conditions (SPEIL, Precipitation), and heat stress
(LST), in line with existing multi-sensor drought methodologies (Bento
et al., 2018; Jiao et al., 2019). Prior to PCA, every variable was stan-
dardized to z-scores to remove unit differences as well as to offer equal
weighting during the decomposition process (Esfahanian et al., 2017).

PCA analysis revealed that PC1 accounted for 75 % of the variance,
which is sufficient to develop a fused drought index. The eigenvector
values for PC1 indicated that VHI (0.402) and SPEI (0.338) were the
highest positive contributors, followed by NDVI (0.316) and Precipita-
tion (0.261). In contrast, LST (—0.317) was a negative contributor since
drought severity is negatively correlated with it; an increase in tem-
perature aggravates drought stress (Abdelrahim and Jin, 2025b;
Hazaymeh and Hassan, 2017).

The MDIF values were subsequently scaled between 0 % and 100 %,
where 100 % indicates no drought (normal temperatures, good vege-
tation, normal rainfall) and 0 % indicates extreme drought (high tem-
peratures, severe vegetation stress, rainfall deficit). In operational
classification, the MDIF values were divided into five classes of drought
severity: no drought (60-100 %), mild drought (50-60 %), moderate
drought (40-50 %), severe drought (20-40 %), and extreme drought
(0-20 %). This is a classification strategy in line with common thresh-
olds used in global drought monitoring systems, e.g., the Vegetation
Health Index (Kogan, 1995) and the SPEI method (Vicente-Serrano
et al., 2010).

International Journal of Applied Earth Observation and Geoinformation 144 (2025) 104917

By bringing together multiple drought-sensitive parameters in a
single index, MDIF offers a robust, multivariate representation of
drought status across Africa, overcoming the deficiencies of single-
variable indices. By this integration method, both meteorological forc-
ing and ecosystem response are detected, making more vigorous spatial
and temporal observation of drought dynamics possible (Chere and
Debalke, 2024; Hasan and Abdullah, 2023).

To ensure the performance of the newly established MDIF, its outputs
were first cross-compared with the internationally recognized SPI at a 3-
month timescale (SPI-3). SPI values were calculated from precipitation
data using R Studio, and monthly SPI-3 maps for the 2000-2024 period
were generated. Pearson correlation analysis at the pixel level between
MDIF and SPI-3 across Africa revealed high correlations of 0.72 to 0.84
(p < 0.05) in semi-dry and dry areas such as the Sahel, the Horn of
Africa, and Southern Africa (Figs. 3a, b), confirming that MDIF is able to
detect precipitation-induced drought signals (Bhuyan-Erhardt et al.,
2019; Liu et al., 2021).

To further extend the validation beyond meteorological drought,
MDIF was also correlated against the Vegetation Health Index (VHI),
which is a combination of NDVI and LST to represent vegetation and
thermal stress, respectively. The correlation showed even stronger cor-
relations, ranging from 0.76 to 0.87 (p < 0.05), particularly over
vegetated regions (Figs. 3c, d). This confirms that MDIF, apart from
capturing rainfall anomalies, is equally well correlated with ecological
drought indices.

Fig. 3. Validation of the Multivariate Drought Index Fusion (MDIF) against benchmark indices. Panels (a) and (b) show the spatial distribution and density of
Pearson correlation coefficients between MDIF and SPI-3 (precipitation-based meteorological drought index). Panels (c) and (d) show the corresponding correlation
analysis between MDIF and VHI (vegetation and thermal stress index). Both validations indicate strong and statistically significant correlations (p < 0.05), confirming
that MDIF captures both meteorological and ecological drought components across Africa.



N.A.M. Abdelrahim and S. Jin

Across vegetated regions, MDIF also exhibited strong coherence with
observed drought occurrences, such as the 2016-2017 East African
drought (Han et al., 2022) and the 2002-2003 southern African drought
(Zeng et al., 2023). Spatial overlays also confirmed that drought clusters
identified by MDIF were well aligned with historical drought impact
zones reported by Rhein and Jansesberger, (2024). These validation
results confirm that MDIF not only confirms meteorological drought
indices like SPI but also offers enhanced sensitivity by incorporating
vegetation and thermal stress components, thus producing a more uni-
fied portrayal of drought.

3.2. Spatiotemporal distribution of drought conditions across Africa

The drought regimes across Africa between 2000 and 2024, as
implied from the MDIF index, depict a very dynamic and regionally
varying pattern of water stress. During the early 2000 s (2000-2004),
Southern Africa always stood out as a drought hotspot as indicated in
Fig. 4, with severe drought prevailing in more than 60 % of the subre-
gion in 2001-2002, covering countries such as Namibia, Botswana, and
South Africa. Concurrently, the Horn of Africa experienced chronic
drought stress, while the Sahel became increasingly dry, particularly in
its western parts. These regional droughts often propagated along a
northeast-to-southwest axis, consistent with the dominant propagation
pathway shown in Fig. 9.

Between 2005 and 2009, drought severity again came back over
Southern Africa, with its worst form in 2005 when over 70 % of the
region faced severe to extreme conditions. The Horn of Africa concur-
rently faced some of its worst drought years, especially in 2006.
Southern Africa received temporary relief in 2007, but the Horn and
Sahel areas continued to face extensive dryness, as severe indicators of
drought again returned in 2008-2009. These years witnessed the
consolidation of the Horn of Africa as a persistent drought hot spot,
whereas the Sahel showed migrating bands of moderate to severe
drought stress.

The period 2010-2015 registered some of the worst and most
widespread droughts in decades. The 2010-2011 Horn of Africa drought
covered nearly 80-90 % of the region, with the Sahel indicating sharply
defined drought stripes in its central and eastern parts. Southern Africa
entered another desperate drought phase in 2012-2015, culminating in
2015 when nearly 75 % of the region was affected. These large-scale
droughts were directionally coherent, with the vectors of propagation
localized in the northeast-to-southwest quadrant (Fig. 9b).

From 2016 to 2023, Africa continued to experience repetitive, large-
scale drought incidents. Southern Africa suffered from severe drought
during the year 2016, which was a multi-year extreme event, while the
Horn of Africa was once more engaged in a prolonged period of
exceptional drought from 2017. This three-year interval (2017-2019)
saw the Horn and East Africa under the continuous effect of severe to
extreme stress, with maps showing intense red hues over large areas.
Southern Africa experienced more varied conditions after 2017, with
some recovery in some regions but others remaining dry, particularly in
the far south and west. The Sahel region showed strong dryness over its
western and central sectors in these years. The final maps for 2020-2023
display the persistent vulnerability of the Horn of Africa, which was
under extreme drought through 2022-2023—visually one of the most
severe in the whole record. Southern Africa also saw persistent moderate
to severe drought in its western and central parts, and the Sahel dis-
played repeated stripes of moderate dryness.

During the whole 2000-2024 period, the Horn of Africa was the
driest part of the continent, often affected by hard and prolonged crises,
most notably in 2006, 2010-2011, 2017-2019, and 2022-2023 as
shown in fig. 5. Southern Africa also experienced various large-scale
drought episodes, including extensive multi-year periods during
roughly 2001-2002, 2005-2006, and 2014-2017, with spillovers into
the 2020 s. The Sahel also had high year-to-year variability, with
alternation in intensity of drought latitudinally and longitudinally but
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often recurring.

North Africa, controlled by the Sahara Desert, consistently gave dry
MDIF signals, characteristic of its typical hyper-arid climate rather than
intermittent drought anomalies. Central Africa, in contrast, was rela-
tively less affected by large-scale extreme drought but experienced pe-
ripheral incursions of dryness during years of broader regional drought.
Most significantly, the no clear continent-scale intensifying or dis-
appearing trend of drought is apparent. Instead, a pattern emphasizes
the complex interplay of regional climate drivers, namely ocean-
atmospheric teleconnections and land-atmospheric feedbacks, that has
led to a chronic susceptibility and sensational spatiotemporal variability
of drought occurrence in Africa over the past two decades.

To facilitate simple interpretation of Fig. 5, the categories of drought
(mild, moderate, severe, and extreme) were determined using percentile
cutoff values of the MDIF distribution: extreme drought at or below the
20th percentile, severe drought between the 20th and 40th percentiles,
moderate drought between the 40th and 50th percentiles, and mild
drought between the 50th and 60th percentiles. This percentile-based
grouping is also in agreement with commonly employed methodolo-
gies in global drought monitoring (Kogan, 1995; Hao and Singh, 2015),
in that severity levels are directly comparable between regions and
years. Fig. 5 therefore illustrates, for each African subregion and year,
the proportion of land surface that falls within these standardized ranges
of drought.

To improve the demonstration of spatial consistency and perfor-
mance of the MDIF, we present comparison maps of spatial distribution
of MDIF, VHI, and SPI-3 for typical periods of extreme drought events in
Africa.

These maps provide visual validation of the ability of MDIF to
reproduce the spatial area and intensity of the drought condition. Fig. 6
graphs MDIF versus VHI and SPI-3 for the 2011, 2019, and 2023 drought
years. For each of these years, MDIF has excellent spatial correspon-
dence with both indices, highlighting the 2011 Horn of Africa disaster,
the 2019 South African drought, and the more heterogeneous 2023
condition. There are minor spatial variations, yet MDIF always indicates
the spatial extent and severity of drought according to both precipita-
tion- and vegetation-based criteria. These graphical results reinforce the
statistical associations and highlight MDIF’s potential in merging
meteorological and ecological indicators of drought into a coherent and
reliable observing paradigm. Improvement in the future is through the
integration of soil moisture data and application of machine learning
models for detecting nonlinear drought drivers. Overall, MDIF is a
sound, scalable, and operational tool for observing Africa-wide
droughts, providing more perceptive perspectives on evolving drought
risk in the continent.

3.3. Spatiotemporal dynamics of drought movement

Spatial and temporal examination of drought propagation across
Africa according to observed drought front density, velocity, and
dominating direction trends reveals complex regional disparities and
varying drought migration pathways that reflect underlying climatic
forcing and land-atmosphere coupling.

The density map (Fig. 7a) reveals definitive drought front hotspots
that have suffered multiple invasions of drought occurrences over the
past two decades. Notably, southern Madagascar is one epicenter with
the largest number of front occurrences, a maximum of 120 drought
fronts, and during the observation period, being among the longest
drought-affected places on the continent. This aligns with recent worst-
case droughts that have precipitated humanitarian crises in the region.
Similarly, north Algeria and Libya of the northern Sahel-Sahara tran-
sitional zone also show high drought density, more than 100 occur-
rences, and reflective of multiple drought initiation or persistence along
this climatic boundary.

There are other regions with moderate density hotspots (30 to 80
fronts) across east Ethiopia, north Somalia in the Horn of Africa, south
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Fig. 4. Spatiotemporal distribution of drought severity, with reddish hues indicating drought intensity and bluish hues representing wetter conditions. This figure
highlights persistent hotspots in the Horn of Africa and Southern Africa, as well as shifting drought patterns over the 24-year period.
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Fig. 5. Timeline of Major Drought Episodes Across African Regions (2000-2024). The horizontal bars represent drought severity (moderate, severe, extreme) and
spatial extent for five sub-regions: North Africa, West Africa, Central Africa, East Africa, Southern Africa, and the Sahel. Notable events include the 2011 Horn of

Africa extreme drought and the 2015-2017 Southern Africa multi-year crisis.

Angola, north Botswana, and mid-Sudan. These are secondary hotspots
where drought occurrence frequencies have been considerably higher,
pointing towards their vulnerability to monsoon failure as well as at-
mospheric circulation anomalies (Han et al., 2022; Samasse et al., 2018).
Conversely, regions such as Central Africa have low front density, which
indicates their relative hydrological stability due to equable tropical rain
regimes.

The average drought front rate map (Fig. 7b) reveals steep regional
variations in the speed with which drought progresses. The highest
spreading rates are widespread over south Angola, north Namibia, and
south Mozambique, with initial speeds approximated to be as much as
180 km/month. These extreme spreading rates indicate high flash
drought susceptibility, where evapotranspiration deficits and excessive
evapotranspiration drive swift and severe moisture stress escalation
(Bhuyan-Erhardt et al., 2019).

Moderate rates of propagation between 75 and 125 km/month
dominate across the Sahel’s eastern part (Chad, Sudan) and western
Ethiopia and reflect seasonally recurring pulses of drought linked with
monsoonal variation. Central Africa and coastal West Africa, however,
have the lowest rates, typically below 50 km/month, as would be
anticipated from their stable precipitation inputs and thick overlying
vegetation cover that attenuate abrupt drought progress.

The coincidence of high drought density and high-speed propagation
across southern Africa exposes this sub-region to both repeat and rapid-
onset drought emergencies. The dynamic poses significant challenges to
early warning and response systems that need to act on both chronic and
acute drought threats.

The temporal variability of movable drought fronts in Africa is
depicted in Fig. 8. With significant inter-annual variability of alternating
peaks and minima associated with widespread or limited drought ac-
tivity, Fig. 8a shows the number of drought fronts that occur each year.
The impact of dominant climate modes, including ENSO, IOD, and AMO,
which regulate rainfall and the prevalence of drought across the conti-
nent, is consistent with variability. Fig. 8b presents the average yearly
rate of drought front propagation in km/month with the same vari-
ability. High-speed years are in line with rapid spreading of droughts
under strong atmospheric forcing or parched initial conditions, while
low-speed years indicate more localized development. Overall, the re-
sults emphasize the frequency and mobility of the drought fronts and
their dynamic time evolution.

Directional analysis (Fig. 9 a and b) confirms a strong and continuous

northeast-to-southwest axis of drought advancement across Africa. The
most common vector direction (0°-45° sector) has over 200 observed
fronts, which identifies this pathway as the overall trend of movement
over the 25-year observation period. This dominant pathway suggests a
teleconnection of drought onset in the Horn of Africa and northern Sahel
and follow-through propagations towards central and southern Africa,
mostly during El Nino and positive Indian Ocean Dipole (IOD) phases
(Ogunrinde et al., 2024; Zeng et al., 2023). Secondary movement pat-
terns include: Eastward dispersion (90°), particularly evident over the
Sahel and south Africa, relating to lateral displacements in bands of
droughts linked with zonal wind anomalies. Southward propagation
(180°) with 50-75 occurrences, occurring mostly over eastern Africa,
and Westward displacement (270°), though less frequent (~40 occur-
rences), relating to isolated east-to-west drought migration events. The
movement of drought fronts is not random but happens in unique
regional patterns, and There are specific regions more prone to drought
front activity, indicating increased vulnerability. The speed of drought
front propagation varies across the continent, impacting predictability
and influence of drought events.

Fig. 10 shows the spatial structure of drought front centroids, with
each representing the centroid of a drought patch. Dense clustering
appears over the Sahel, the Horn of Africa, and Southern Africa, con-
firming them to be chronic drought hotspots with frequent and extensive
events. The Congo Basin and coastal West African regions have low
centroid density, as would be expected from their humid settings and
higher rainfall stability. Extended clusters, particularly from the Sahel to
the southwest and extending across Southern Africa, highlight dominant
corridors of drought propagation. The spatial perspective complements
the temporal analysis by both identifying areas prone to drought and
identifying giant drought mobility corridors across the continent.

3.4. Discussion

This article introduces a novel continental-scale monitoring system
for mobile drought dynamics in Africa using the Multivariate Drought
Index Fusion (MDIF). Through the integration of different remote
sensing and climatic indicators (NDVI, LST, precipitation, SPEI, VHI)
with principal component analysis (PCA), MDIF outperforms static as-
sessments to quantify the dynamic expansion of drought fronts.

Validation confirmed MDIF’s robustness, with significant correla-
tions with SPI-3 and VHI (r = 0.72-0.84 and r = 0.76-0.87, respectively,
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Fig. 6. Spatial Distribution Comparison of Drought Indices for Selected Years. Maps show drought conditions across Africa for (a) 2011, (b) 2019, and (c) 2023, as
depicted by MDIF (left column), VHI (middle column), and SPI-3 (right column). Red/orange colors indicate drier conditions, while blue/green colors indicate wetter
conditions. The visual consistency across indices highlights MDIF’s robust performance in capturing the spatial extent and severity of drought events. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(a) (b)

Speed (Km/month)

Fig. 7. Drought Front Density and Propagation Speed Across Africa. (a) Density Map: Hotspots of recurrent drought fronts (e.g., southern Madagascar, northern
Sahel) with counts exceeding 100 fronts. (b) Speed Map: Regional contrasts in propagation velocity, with southern Africa experiencing rapid movements (>150 km/
month) and Central Africa showing slower speeds (<50 km/month).

Fig. 8. Temporal Dynamics of Mobile Drought Fronts Across Africa (2000-2024). (a) Yearly count of identified mobile drought fronts, illustrating inter-annual
variability in drought occurrence. (b) Average annual speed of mobile drought fronts (km/month), showing variations in propagation velocity over time.
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(a)
(b)

Fig. 9. Dominant Propagation Directions of Drought Fronts. Rose diagrams depict azimuthal trends in drought front movement. The dominant northeast-to-
southwest axis (0°-45°) aligns with teleconnections driving drought migration, while secondary eastward (90°) and southward (180°) patterns reflect regional
climatic variability.

Fig. 10. Density of Mobile Drought Front Centroids Across Africa (2000-2024). The concentration of points indicates regions with higher frequency and spatial
extent of mobile drought events, highlighting persistent drought hotbeds and dominant propagation corridors. Each point represents the centroid of a detected
drought patch.
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in arid areas). This reflects its capability to monitor meteorological,
agricultural, and ecological drought simultaneously. Compared to
rainfall indices, MDIF successfully delineated the severe 2019-2021
Madagascar drought and accurately marked the 2016-2017 East African
and 2002-2003 Southern African droughts, confirming with FAO (2022)
and past studies (Han et al., 2022; Zeng et al., 2023). Drought front
centrifugal spatial density noticeably separates chronic hotspots. High-
est concentration levels were observed in the Horn of Africa, the Sahel,
and Southern Africa, with the Horn region alone recording over 100
events on average. Such trends confirm their perennial exposure to
dryness. MDIF’s ability to compile vegetation within regions where the
precipitation indices are weak complements such area observation.

The response of MDIF to drought is shaped by the varying behavior
of its input indicators across Africa’s diverse climatic zones. In hyper-
arid regions such as North Africa, vegetation indicators like NDVI
show limited variability, so MDIF tends to be more strongly influenced
by meteorological components such as SPEI and precipitation. In
contrast, in humid equatorial regions, NDVI remains relatively stable,
and drought detection relies more on anomalies in rainfall and soil water
balance. Semi-arid regions, including the Sahel and Southern Africa,
exhibit strong LST responses to water stress due to rapid declines in
evapotranspiration, making thermal indicators a dominant driver of
MDIF variability. These regional contrasts mean that while a uniform
percentile threshold facilitates continental comparison, it may not fully
capture local drought severity.

Tracking analysis revealed high spatial and temporal heterogeneity
of drought mobility. Maximum velocities were in years such as 2000,
2003, 2008, and 2019, in correspondence with inter-annual fluctuations
in atmospheric and land-surface conditions. Regionally, most significant
velocities were in Southern Africa, at velocities of up to 180 km/month
over Angola, Namibia, and Mozambique, in consistency with its flash
drought susceptibility and high evaporative demand (Bhuyan-Erhardt
et al., 2019; Bento et al., 2020). The Sahel had moderate rates (75-125
km/month), which reflect its intermediate climate, while Central Africa
displayed the lowest movement (25-50 km/month) due to more rainfall
buffering. The moving bands seen in the Sahel reflect past drought belt
movements associated with monsoon variability (Samasse et al., 2018).
Directional analysis further revealed a dominant Sonoran northeast-to-
southwest direction (Fig. 9) that implies that droughts tend to initiate
in the Horn and Sahel and propagate into Eastern and Southern Africa.
This is corroborated by studies linking propagation with large-scale
teleconnections such as AMO and SOI, while the shifting drought belts
in the Sahel align with monsoon variability (Ogunrinde et al., 2024).

The successful development and validation of the MDIF for
continental-scale drought monitoring in Africa suggest its strong po-
tential for extensibility to other regions globally. However, for optimal
performance and accurate representation of local drought conditions,
direct application would require careful regional calibration. This in-
cludes re-deriving PCA component loadings and re-establishing
percentile-based drought severity thresholds using historical data spe-
cific to the target region. Furthermore, local validation against ground-
based observations would be essential to confirm the adapted MDIF’s
accuracy and reliability in diverse climatic and ecological contexts. This
adaptability highlights the broad utility of our framework for enhancing
global drought monitoring capabilities.

The real-time data on the speed, direction, and density of drought
fronts provide actionable information for downstream impact fore-
casting, constituting a useful supplement to traditional static maps of
drought. This method significantly enhances capacity for early warning
and enables transboundary management of drought, particularly where
events blur across borders. In spite of its important contributions, this
research has some limitations. Methodologically, although PCA effec-
tively aggregates a set of indicators, it requires linearity and thus
possibly does not capture completely nonlinear interactions, i.e., com-
pound heatwave-drought effects. The application of a homogenous 60th
percentile threshold at the continental scale, although it guarantees
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comparability, possibly does not catch local drought intensity due to the
heterogeneity of climatic zones in Africa. For instance, the MDIF in
hyper-arid regions is controlled by meteorological factors, and thermal
indicators prevail in semi-arid regions. Furthermore, the minimum
patch size of 1,000 km? precludes localized events, and monthly tem-
poral resolution can potentially miss capturing rapid-onset flash
droughts.

Future researches should address these constraints by constructing
adaptive thresholds calibrated by climate zones or ecosystems to
maximize local sensitivity. Increased product frequency (e.g., dekadal
NDVI/LST, weekly soil moisture) would improve flash drought detect-
ability and more accurately estimate front speed and direction.
Combining microwave-based soil moisture observations (e.g., SMAP,
ESA CCI) would better represent root-zone droughts in areas with cloud
contamination. Also, transitions into PCA-machine learning model
integration (e.g., autoencoders, random forests) could enhance detec-
tion of complex, nonlinear causes of drought. Quantifying the influence
of leading ocean-atmosphere teleconnections (ENSO, IOD, AMO) on
observed propagation patterns using direct correlation and regression
analysis is one central direction of research. Finally, large-scale ground
verification against streamflow, crop damage, and impact data is
essential to improve the utility of MDIF for early warning applications.

4. Conclusions

This study offers a stringent spatiotemporal analysis of African
drought variability over 2000-2024 underpinned by a novel Multivar-
iate Drought Index Fusion (MDIF) technique. Combining NDVI, LST,
precipitation, SPEIL, and VHI using PCA, MDIF captures both meteoro-
logical and ecological drought indices, with broader sensitivity than
traditional single-variable ones. Validation with SPI-3 and VHI deter-
mined strong correlations (r = 0.72 to 0.84 and r = 0.76 to 0.87
respectively) in arid regions such as the Sahel, the Horn of Africa, and
Southern Africa, which validate the framework. The outcomes deter-
mine established hotspots, particularly the Horn of Africa, with recur-
ring crises in 2006, 2010-2011, 2017-2019, and 2022-2023. Southern
Africa experienced multi-annual drought events in 2001-2002,
2005-2006, and 2014-2017, and the Sahel experienced recurring bands
of high variability drought. The droughts progressed from northeast to
southwest, with the fastest forward movement in Southern Africa. These
findings align with earlier drought chronologies and confirm the use of
the MDIF framework.

In addition to its scientific significance, MDIF has implications for
operation in early warning, drought risk estimation, and policy
response. The framework can guide African governments and regional
institutions for improving readiness and adjustment towards drought
disasters. MDIF is a robust, scalable, and operational tool for Africa-wide
drought monitoring, which provides enhanced insights into evolving
drought risks across the continent.
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