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A B S T R A C T

Drought remains the most widespread and debilitating climate hazard in Africa, which threatens food safety and 
socio-ecological stability across the continent. Traditional drought monitoring systems, however, typically never 
register the dynamic evolution of drought episodes, which can extend between areas and amplify effects 
downstream. This study proposes a new Multivariate Drought Index Fusion (MDIF) that, apart from merging 
different drought indicators, mainly tracks the spatiotemporal trajectory of mobile drought fronts across Africa 
from 2000 to 2024. Avoiding the shortcomings of static drought maps, this approach offers a dynamic presen
tation of drought propagation patterns required for timely warning and management. Through the use of 
Principal Component Analysis (PCA), MDIF integrates multiple drought indicators, Normalized Difference 
Vegetation Index (NDVI), Land Surface Temperature (LST), precipitation, Standardized Precipitation- 
Evapotranspiration Index (SPEI), and Vegetation Health Index (VHI), into a fused, highly reliable, 
meteorological-ecological sensitivity drought index. The MDIF exhibited significant correlations with SPI-3 (r =
0.72–0.84), particularly across arid and semi-arid regions, and with VHI (r = 0.76–0.87), further underscoring its 
robustness in capturing both meteorological and ecological drought conditions. The findings indicate the Horn of 
Africa as a long-term drought hotbed, with severe events during 2006, 2011, 2017–2019, and 2022–2023, while 
Southern Africa experienced severe multi-year droughts from 2014 to 2017. Our tracking analysis, for the first 
time, indicates a dominant northeast-to-southwest trajectory of drought fronts over sub-Saharan Africa. This 
research enhances continental drought early warning through dynamic mapping of intensity and mobility for 
resilience planning.

1. Introduction

Drought remains one of the most devastating natural disasters in the 
world, and it has significant effects on ecosystems, agricultural yields, 
water resources, and human lives (Abdelrahim and Jin, 2025a; Ssem
bajwe et al., 2025). The Sahel, southern Africa, and the Horn of Africa 
regions, in particular, have been confronted with recurring drought 
emergencies leading to loss of crops, hunger, and internal displacement 
of individuals (Lambert et al., 2016; Samasse et al., 2020; Tong et al., 
2020; Hassan and Jin, 2016). Against the backdrop of these acute 
socio-economic as well as environmental necessities, it is a priority on 
the agendas of national and global policymaking (FAO, 2023; Mishra 
and Singh, 2010).

Major ocean–atmosphere teleconnections intricately interact to 
control drought regimes over Sub-Saharan Africa. A coupled Atlantic 
Multidecadal Oscillation (AMO) and Southern Oscillation Index (SOI) 
accounts for up to 43 % of West African drought variability (Ogunrinde 
et al., 2024). Drought events are intensified and made more spatially 
heterogenized through West African Monsoon system changes and 
land–atmosphere feedbacks (Heiss et al., 2025; Samasse et al., 2018). 
Another level of complexity is introduced by compound droughts, which 
occur together with heat waves and precipitation shortage. Han et al. 
(2022) concluded from a 2016–2017 Horn of Africa drought study that it 
was a 250-year event where small rainfall deficits were augmented by 
record (+1.02 ◦C) temperatures to enhance moisture stress, echoing 
global-scale behavior observed in California.
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Single-index measures like the Standardized Precipitation Index 
(SPI) and the Standardized Precipitation Evapotranspiration Index 
(SPEI), controlled by atmospheric water deficits, are the backbone of 
traditional drought observation (Chere and Debalke, 2024; Dong et al., 
2023). These indices are useful in hydrologic research but do not pro
vide the complete picture of agricultural droughts where surface energy 
fluxes, vegetation response, and soil moisture deficit are of equal 
importance (Esfahanian et al., 2017). According to Chere and Debalke 
(2024) and Bento et al. (2018), single-index or single-sensor methods 
cannot identify initial stress in vegetation before the onset of symptoms.

Remote sensing has revolutionized drought monitoring through 
enabling large-scale repetitive surveillance of vegetation condition, land 
surface temperature (LST), and soil moisture proxies (Abdelrahim and 
Jin, 2025a; Jia et al., 2020; Jin et al., 2017; Jin et al., 2025; Mostafa 
et al., 2021). Vegetation indices such as the Normalized Difference 
Vegetation Index (NDVI) (Adhikari et al., 2024; Bento et al., 2020), the 
Vegetation Health Index (VHI) (Chere and Debalke, 2024; Kogan, 1995), 
and soil-adjusted vegetation indices (Huete, 1988; Konno and Homma, 
2023) have been widely used to detect vegetation stress. Bento et al. 
(2020) demonstrated the synergistic function of NDVI and LST in the 
context of VHI, particularly in dryland environments. Most recent 
research has also employed radar (SAR) and GNSS-Reflectometry data to 
estimate soil moisture, further contributing to the bountiful drought 
detection toolkit (Edokossi et al., 2020; Jin et al., 2024a,b). Machine 
learning methods, including self-organizing maps (Céréghino and Park, 
2009; Iyer and Krishnan, 2024), random forests, and deep learning ap
proaches (Choukri et al., 2024; Luo et al., 2024), have been proposed to 
integrate these multi-sensor observations into composite drought as
sessments with greater accuracy (Jiao et al., 2019; Kulkarni et al., 2020). 
Though numerous remote sensing–based drought monitoring methods 
are still centered on static severity classification or pixel-based temporal 
anomalies, the latest developments have increasingly attempted to 
replicate drought dynamics. Studies using GRACE-based water storage 
anomalies (Ali et al., 2023; Elameen et al., 2023), soil moisture anomaly 
monitoring (Ajaz et al., 2019; Alasow et al., 2024), and time-lagged 
vegetation indexes (Liu et al., 2021; Nigatu et al., 2024) are valuable 
contributions toward the characterization of drought propagation. 
However, there are not many models to dynamically monitor mobile 
drought fronts on a large scale.

Despite these successes, there are some gaps in drought monitoring 
literature. While single-index approaches remain prevalent, multi-index 
and multi-source designs are increasingly becoming popular (e.g., SPEI, 
SSMI, and CHIRPS-based hybrids) (Palagiri and Pal, 2024; You et al., 
2025), and regional/global systems such as the U.S. Drought Monitor 
(USDM) (Yin and Zhang, 2023) demonstrate successful operational 
fusion (Hao and Singh, 2015; Pozzi et al., 2013). Nonetheless, there 
remain challenges in creating uniform, transferable multivariate fusion 
models for continental-scale operational drought monitoring, especially 
in Africa. Similarly, while numerous studies have investigated drought 
propagation owing to soil moisture memory, plant stress, and lagged 
climate signals (Beyene et al., 2023; Bilal and Gupta, 2024; Gorugantula 
et al., 2025), methods to operationally detect and monitor propagating 
drought fronts at large spatial scales remain lacking. Second, multi- 
sensor data fusion, while promising (Du et al., 2013; Jiao et al., 2019), 
lacks universal consensus about the most adequate approaches for 
optimal fusion strategies, particularly for operational agricultural 
drought monitoring in Africa. Third, while significant advancements 
have been made in describing the spatiotemporal dynamics of drought 
propagation, particularly through the application of three-dimensional 
(3D) approaches to drought identification (Feng et al., 2025; Yoo 
et al., 2022), a matter of significant importance but less debated is the 
dynamic monitoring of drought fronts—drought’s progression and ag
gregation over landscapes as an evolving process (Bento et al., 2018; 
Brandt et al., 2016). Whereas station-based conditions are diagnosed by 
drought indices, attempts to dynamically track drought fronts, defining 
their speed, direction, and migration pathways, particularly at the 

continental scale in Sub-Saharan Africa, have been sparse.
To this end, this paper aims to bridge these gaps with a twin inno

vation: (1) developing a Multivariate Drought Index Fusion (MDIF) 
based on PCA (A. Farrag et al., 2020; Abdelrahim and Jin, 2025b) to fuse 
and integrate principal drought variables from multi-source remote 
sensing and climate archives. and (2) the first continent-scale algo
rithmic surveillance of mobile drought fronts, their density, velocity, 
and dominant directions of propagation across Africa. We selected 
NDVI, LST, precipitation, SPEI, and VHI as surrogate drought indicators. 
NDVI and VHI indicate vegetation response (Adhikari et al., 2024; Zeng 
et al., 2023), LST indicates evapotranspiration and surface heat stress, 
and precipitation and SPEI indicate meteorological water deficits (Dong 
et al., 2023; Rahimi et al., 2025). Together, these variables indicate both 
ecosystem impacts and hydroclimatic drivers. For integration purposes, 
we used the PCA, which is a popular method that reduces dimensionality 
and extracts the dominant drought signal in correlated data (Schwartz 
et al., 2022). Using connected component analysis and vector tracking 
algorithms on them, we calculate the velocity (km/month), direction 
(degrees), and distance (km) of the movement of drought front in Africa. 
Such active monitoring offers valuable information for enabling antici
pation of subsequent drought impacts before their complete develop
ment. Importantly, the methodological contribution of this paper lies in 
its use of MDIF to enable the first continent-scale monitoring of mobile 
drought fronts in Africa. By leveraging the integration and propagation 
analysis, we go beyond the traditional anomaly-based monitoring to 
detect the changing trajectories of drought across space and time.

The main objectives of this study are to: (1) Develop a multivariate 
drought index by combining a number of remote sensing and climatic 
indicators using PCA; (2) Compare the proposed MDIF index with the 
globally accepted SPI, and VHI in correlation and time series comparison 
measures; (3) Track drought front dynamics across Africa for the years 
2000–2024, quantifying their spatiotemporal characteristics (speed, 
direction, distance); and (4) Analyze the long-term trends and persistent 
corridors of drought propagation by aid of statistical and spatial analysis 
techniques. The innovation of this study is the coupling of multi-sensor 
index fusion and dynamic front tracking of droughts, underpinned by 25 
years of monthly remote sensing data over the complete Sub-Saharan 
Africa region. This study moves from static monitoring of drought to 
dynamic propagation analysis and provides new scientific understand
ing of the dynamics of droughts as moving phenomena immediately 
relevant to agricultural management, water resource planning, and 
climate change adaptation strategies in Africa and elsewhere. The rest of 
this paper shows materials and methods in Section 2, Section 3 presents 
results, analysis and discussions, and finally the conclusion is given at 
Section 4.

2. Materials and methods

2.1. Study areas

This study spans the entire African continent (Fig. 1), covering more 
than 30 million km2 and home to over 1.4 billion people, with climatic 
and ecological conditions ranging from hyper-arid deserts to humid 
tropics and temperate zones (Abdelrahim and Jin, 2025c). The Sahara 
prevails in North Africa, where rainfall amounts are below 100 mm per 
year, restricted to irrigated Nile and Mediterranean regions. To the south 
of the desert is the Sahel, which is sustained by summer rains 
(June–September) favoring millet, sorghum, and livestock, though it is 
very arid (FAO, 2022; Samasse et al., 2018).

West Africa is experiencing a bimodal rainfall regime along the Gulf 
of Guinea (1,200–2,500 mm per year), with which cocoa, cassava, and 
oil palm are sustained. Central Africa, dominated by the Congo Basin, 
has over 2,000 mm of rainfall, supporting tropical rainforests and sub
sistence crops of cassava, plantains, and maize. East Africa is more 
climatically variable, notably in the Horn, where bimodal wet seasons 
govern agriculture but are often disrupted by ENSO and IOD anomalies, 
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which create recurring droughts (Zeng et al., 2023).
Southern Africa is characterized by a unimodal regime of summer 

rainfall (500–1,200 mm per year) favoring maize, soybean, and sugar
cane but frequently affected by severe meteorological droughts, like in 
Zimbabwe and South Africa (Han et al., 2022). Such diverse climatic 
regimes, coupled with excess reliance on rainfed agriculture and uneven 
governance capacity, make Africa highly vulnerable to compound and 
complex drought events. Controlling drought hazard at the continental 
scale therefore requires approaches that can encapsulate the heteroge
neity of the continent’s multi-ecological and multi-climatic nature. Cli
matic characteristics of the major zones treated in this study are shown 
in Table 1 (Abdelrahim and Jin, 2025c).

2.2. Data

To monitor and analyze drought situation across the African conti
nent from 2000 to 2024, this study integrates a set of remotely sensed 
and climatic-based data that provide extensive coverage of both vege
tation response and hydroclimatic drivers. Five key variables were 
selected: The NDVI, LST, Precipitation, SPEI, and VHI. Spatiotemporal 
analysis of drought development in detail is facilitated by the gridded 
spatial and monthly temporal resolution of all data sets.

MODIS MOD13Q1 NDVI is widely accepted as a measure of natural 
ecosystem and agricultural wet stress sensitivity, and it is used as a proxy 
for photosynthesis and vegetation condition (Huang et al., 2021; Pala
giri and Pal, 2024). LST, derived from MODIS MOD11A2, is a measure of 
land surface temperature and a reliable indicator of evapotranspiration 
anomalies, which are reported to be higher in instances of drought 
(Alexander, 2020; Khorrami and Gunduz, 2020). Precipitation estimates 
were taken from the Climate Hazards Group InfraRed Precipitation with 
Station (CHIRPS) dataset, which merges satellite and station data to 

provide accurate rainfall estimates across Africa’s diverse landscapes 
(Adloff et al., 2022; Khorrami et al., 2024).

The SPEI was used in this study to detect climatic conditions of 
dryness across the African continent. In this work, data from SPEI at a 3- 
month timescale (SPEI-3) was used, which satisfactorily characterizes 
seasonally based moisture shortages that contribute to crop productivity 
and vegetation vigor (Dong et al., 2023; He et al., 2024). 3-month scale 
is a balance of short-term meteorological drought indices and longer 
hydrological stress, hence a perfect choice for agricultural drought 
monitoring (Hasan and Abdullah, 2023). SPEI data were retrieved from 
the SPEIbase v2.7 database, with the 2000–2024-time frame and a 
spatial resolution of 0.5◦ (~50 km). This data fusion approach from 
multiple sources provides a solid foundation on which to establish a 
continental-scale integrated drought monitoring system that portrays 
both ecosystem response and climatic forcing (Jiao et al., 2019). Table 2
presents the data characteristics.

2.3. Methodology

The study uses a rigorous, multi-stage methodology to detect and 
monitor mobile drought fronts across the African continent from 2000 to 
2024. The approach is divided into four major stages: harmonization 
and preprocessing of data, computation of the Multivariate Drought 
Index Fusion (MDIF), drought detection using the fused index, and 
drought front advances and dynamics monitoring as shown in Fig. 2.

2.3.1. Data preprocessing
Given the multi-source origin of the datasets, the initial step was a 

preliminary preprocessing step to ensure spatial and temporal homo
geneity. The input datasets NDVI, LST, precipitation, VHI, and SPEI were 
all re-sampled to a consistent spatial resolution of 0.1◦ (~10 km), as best 

Fig. 1. The map illustrates the African continent, Panel (a) displays the topographic variation across Africa, emphasizing key regions such as the Ethiopian Highlands 
and the Congo Basin. Panel (b) illustrates land cover types (e.g., forests, savannas, deserts) derived from MODIS MCD12Q1 data, highlighting agriculturally relevant 
zones masked for drought analysis.
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practice in continental drought monitoring (Dibs et al., 2023; Ni et al., 
2022). The original 16-day and 8-day composites of MODIS-based NDVI 
and LST data were combined to create monthly means. The monthly 
timescales were also used to average the weekly NOAA STAR VHI 
product (García et al., 2016; Patil and Dubey, 2017). To account for the 
seasonality of drought variability associated with agricultural impacts, 
SPEI was applied at the 3-month scale (SPEI-3) (Liu et al., 2021; Vicente- 
Serrano et al., 2010). For continuous variables such as NDVI, LST, SPEI, 
VHI, and reprojection of CHIRPS precipitation data, bilinear 

interpolation (Iman Bin Hussain et al., 2025; Kian Kee Teoh et al., 2008) 
was applied to ensure spatial consistency and preserve the continuous 
nature of the data during resolution harmonization (Khorrami et al., 
2024; Wu et al., 2019). For uniformity, all datasets were reprojection to 
WGS84 (EPSG:4326) coordinate system. Non-vegetation surface mask
ing (water surface, urban, barren) was done in this step using MODIS 
MCD12Q1 land cover classification (Brandt et al., 2016), thus focusing 
analysis on agriculturally suitable and vegetated surface only. This 
harmonization routine produced monthly raster stacks for each variable, 
spatially and temporally consistent over the course of the study.

2.3.2. Multivariate drought Index Fusion (MDIF)
In order to synthesize the drought indications from a mix of in

dicators, a Multivariate Drought Index Fusion (MDIF) was developed 
through Principal Component Analysis (PCA) (Abdi and Williams, 2010; 
Kulkarni et al., 2020) of the preprocessed variables: NDVI, LST, pre
cipitation, SPEI, and VHI. PCA is a widely recognized dimension 
reduction technique that transforms the variables correlated into un
correlated principal components, which capture the maximum amount 
of variance (Esfahanian et al., 2017; Li, 2024). PCA was selected for 
MDIF due to its robustness, interpretability, and speed of computation, 
particularly for analysis at the continental scale spanning 25 years. PCA 
is efficient in lowering dimensionality as well as objectively integrating 
several indicators of drought by defining the dominant modes of vari
ability (Li, 2024; Schwartz et al., 2022). While PCA assumes linearity 
among variables and does not always replicate complex nonlinear 
drought–climate interactions and composite events (e.g., heatwave–
drought events), it produces an interpretable and unique composite 
drought signal that is crucial for operational surveillance.

Drought-relevant monthly raster stacks were constructed by pixel- 
wise stacking the five variables after normalizing them to standard 
scales (z-scores). PCA was then calculated pixel-wise both in space and 
time, with the first principal component (PC1) of maximum variance 
interpreted as the composite drought stress index (MDIF) (A. Farrag 
et al., 2020; Abdelrahim and Jin, 2025b). This combined index in
tegrates meteorological drought (SPEI, precipitation), vegetation stress 
(NDVI, VHI), and thermal moisture stress (LST) and therefore overcomes 
natural limitations of single-variable drought indices (Li et al., 2024). 
Separate PCA calculations were conducted for each month to maintain 
temporal specificity, resulting in a monthly MDIF product for the entire 
study period. Validation of the MDIF index was conducted by comparing 
its outputs with VHI and the 3-month Standardized Precipitation Index 
(SPI-3), computed directly from precipitation data using R Studio. Pre
cipitation data for SPI-3 calculation were used from the CHIRPS dataset 
(0.05◦ resolution, monthly) to ensure consistency between the precipi
tation inputs used within the MDIF framework (Hasan and Abdullah, 
2022; Ho et al., 2021). To both spatially and temporally align the two 
indices, the SPI-3 was upscaled to 0.1◦ resolution by using bilinear 

Table 1 
The main climatic features and crop systems across Africa’s five major sub- 
regions.

Region Climate Type Main 
Crops

Rainfall (mm/ 
year)

Drought 
Vulnerability

North 
Africa

Predominantly 
arid and semi- 
arid, with 
Mediterranean 
influence along 
the coast

Wheat, 
barley, 
olives, 
dates

Less than 100 
mm in the 
Sahara; 
200–600 mm 
in coastal 
zones

High, driven by 
persistent water 
scarcity and 
advancing 
desertification

West 
Africa 
(Guinea 
Coast)

Humid tropical 
climate with a 
bimodal rainfall 
pattern

Cocoa, oil 
palm, 
cassava

1,200–2,500 
mm

Moderate, 
though long- 
term rainfall 
reductions have 
heightened 
drought 
sensitivity

Sahel 
(West 
Africa)

Semi-arid, 
governed by 
seasonal 
monsoon rains

Millet, 
sorghum, 
livestock

200–600 mm Very high, with 
a history of 
devastating 
drought 
episodes such as 
those of the 
1980 s

East 
Africa 
(Horn 
& Rift 
Valley)

Semi-arid to sub- 
humid with two 
rainy seasons

Maize, tea, 
coffee

300–1,200 
mm

Very high, with 
recurrent 
droughts linked 
to ENSO and 
Indian Ocean 
Dipole, e.g., 
2016–2017

Central 
Africa 
(Congo 
Basin)

Equatorial 
rainforest 
climate with 
year-round 
humidity

Cassava, 
plantains, 
maize

1,500–2,500 
mm

Low overall, but 
susceptible to 
occasional short 
dry spells

Southern 
Africa

Semi-arid to sub- 
humid, 
characterized by 
a unimodal 
summer rainfall 
regime

Maize, 
soybeans, 
sugarcane

500–1,200 
mm

High, marked 
by recent severe 
droughts such 
as the 
2015–2016 El 
Niño-related 
event

Table 2 
Datasets and Remote Sensing Sources Used for Multivariate Drought Index Fusion (MDIF).

Variable Dataset Name Spatial Resolution Temporal 
Resolution

Period Covered Source

NDVI (Normalized Difference 
Vegetation Index)

MODIS MOD13Q1 250 m (resampled to 0.1◦) 16-day 
(aggregated 
monthly)

2000–2024 NASA LP DAAC 
MODIS MOD13Q1

LST (Land Surface Temperature) MODIS MOD11A2 1 km (resampled to 0.1◦) 8-day (aggregated 
monthly)

2000–2024 NASA LP DAAC 
MODIS MOD11A2

Precipitation CHIRPS (Climate Hazards Group 
InfraRed Precipitation with 
Station)

0.05◦ (~5 km) Monthly 1981–present CHIRPS Data 
Portal

SPEI (3-month scale) (Standardized 
Precipitation Evapotranspiration 
Index)

SPEIbase v2.7 (3-month 
aggregation)

0.5◦ (~50 km) Monthly (3-month 
scale)

1901–2021 (recent 
updates to 2023)

SPEI Official 
Website

VHI (Vegetation Health Index) NOAA STAR VHI 4 km (aggregated to 
monthly&resampled to 0.1◦)

Weekly 
(aggregated 
monthly)

1981–2024 NOAA STAR VHI 
Download
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interpolation and synchronized to the MDIF monthly time steps 
(2000–2024).

2.3.3. Drought detection using the fused MDIF Index
Following the calculation of the MDIF index, monthly drought status 

was determined through the application of a threshold-based classifi
cation directly on the MDIF values. MDIF values falling below the 60th 
percentile was classified as drought-affected pixels, in line with standard 
drought mapping conventions using percentile ranks (Bhuyan-Erhardt 
et al., 2019; Hao and Singh, 2015). The threshold was chosen to capture 
moderate-to-severe drought status and avoid minor seasonal variability. 
Binary drought masks (1 = drought, 0 = non-drought) were generated 
for each month, developing a 300-month raster series for 2000–2024. 
Single drought patches with an area smaller than 1,000 km2 were 
eliminated by using connected component analysis in order to retain 
only significant drought areas to be tracked (Chere and Debalke, 2024; 
Dalezios et al., 2012). This step converted the continuous MDIF outputs 
into discrete drought event layers, which are suitable for spatiotemporal 
movement analysis.

2.3.4. Tracking mobile drought fronts
The drought front tracking method operates on spatially contiguous 

drought clusters from MDIF monthly classifications. The “drought front” 
refers to a drought-affected contiguous region of pixels (≥1,000 km2) 
that are classified as moderate-to-extreme drought (MDIF ≤ 60th 
percentile). The minimum area criterion was implemented to remove 
local noise and spurious observations that are common in remote 
sensing data so that the events extracted are meaningful and spatially 
consistent drought events. Furthermore, this criterion focuses the anal
ysis on big-weather patterns of large-scale drought events of relevance to 
continental-scale monitoring and regional impact estimation, enhancing 
computational efficiency and tractability for the 25 years over Africa. 
The fronts are characterized by using a Connected Component Labeling 
(CCL) algorithm, consolidating the neighboring drought pixels into 
separate clusters. To track movement, clusters are linked between 
adjacent months under two conditions: (1) proximity (centroids ≤ 200 
km) and (2) intersecting area (≥20 % spatial overlap). These thresholds 
suppress spurious linkages without suppressing gradual drought 
migration patterns.

Movement velocity and direction are calculated from displacement 
of affiliated cluster centroids. Velocity (km/month) is the great-circle 
distance between centroids in month t and month t + 1 divided by the 
time interval (1 month). Direction is calculated from the azimuth angle 
between centroid coordinates, with north (0◦–360◦). For example, a 
northeast-southwest trajectory would be ~ 225◦ azimuth. Centroid 
movement over time allowed drought front speed and direction to be 
calculated. While rapidly computable and good for the identification of 
large-scale patterns of propagation at a continental scale, this method 
has certain weaknesses. It is too naive regarding sophisticated drought 
behavior, particularly when patches of drought coalesce, break apart, or 
experience large-scale shape changes, because the centroid is not 
necessarily representative of such intricate evolutions.

Drought fronts were identified empirically from grid cells that were 
classified as drought using percentile-based MDIF thresholds (extreme 
≤ 20th percentile, severe 20–40th, moderate 40–50th, and mild 50- 
60th). Spatial co-aggregation of these drought-affected cells was sub
sequently used to delineate drought clusters, centroids of which were 
calculated to obtain the front centroids. Front displacement, velocity, 
and direction were subsequently derived from the temporal path of these 
centroids. Thus, the relationship of MDIF values and front properties is 
not assumed but is a natural consequence of the spatiotemporal distri
bution of MDIF anomalies. Local frequency of droughts is conveyed in 
terms of density of drought fronts (number of fronts per pixel over 
2000–2024), whereas speed and direction feed into propagation dy
namics. MDIF values directly influence front characteristics: small MDIF 
(extreme drought) results in larger, more persistent fronts, and sharp 
MDIF declines (e.g., abrupt vegetation stress) could trigger more rapid 
propagation. For instance, MDIF ≤ 20th percentile (extreme drought) 
often occur with fronts of speeds > 150 km/month in moisture-sensitive 
regions like south Africa where the evaporative demand allows for 
enhanced spread of drought.

3. Results and discussions

3.1. Development of Multivariate drought Index Fusion (MDIF)

To build the MDIF, we applied PCA to common monthly anomalies in 
five most significant drought variables: NDVI, LST, Precipitation, SPEI, 

Fig. 2. Workflow Diagram Illustrating the MDIF Development and Drought Front Tracking Methodology.
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and VHI. These variables both capture vegetation response (NDVI, VHI), 
atmospheric humidity conditions (SPEI, Precipitation), and heat stress 
(LST), in line with existing multi-sensor drought methodologies (Bento 
et al., 2018; Jiao et al., 2019). Prior to PCA, every variable was stan
dardized to z-scores to remove unit differences as well as to offer equal 
weighting during the decomposition process (Esfahanian et al., 2017).

PCA analysis revealed that PC1 accounted for 75 % of the variance, 
which is sufficient to develop a fused drought index. The eigenvector 
values for PC1 indicated that VHI (0.402) and SPEI (0.338) were the 
highest positive contributors, followed by NDVI (0.316) and Precipita
tion (0.261). In contrast, LST (− 0.317) was a negative contributor since 
drought severity is negatively correlated with it; an increase in tem
perature aggravates drought stress (Abdelrahim and Jin, 2025b; 
Hazaymeh and Hassan, 2017).

The MDIF values were subsequently scaled between 0 % and 100 %, 
where 100 % indicates no drought (normal temperatures, good vege
tation, normal rainfall) and 0 % indicates extreme drought (high tem
peratures, severe vegetation stress, rainfall deficit). In operational 
classification, the MDIF values were divided into five classes of drought 
severity: no drought (60–100 %), mild drought (50–60 %), moderate 
drought (40–50 %), severe drought (20–40 %), and extreme drought 
(0–20 %). This is a classification strategy in line with common thresh
olds used in global drought monitoring systems, e.g., the Vegetation 
Health Index (Kogan, 1995) and the SPEI method (Vicente-Serrano 
et al., 2010).

By bringing together multiple drought-sensitive parameters in a 
single index, MDIF offers a robust, multivariate representation of 
drought status across Africa, overcoming the deficiencies of single- 
variable indices. By this integration method, both meteorological forc
ing and ecosystem response are detected, making more vigorous spatial 
and temporal observation of drought dynamics possible (Chere and 
Debalke, 2024; Hasan and Abdullah, 2023).

To ensure the performance of the newly established MDIF, its outputs 
were first cross-compared with the internationally recognized SPI at a 3- 
month timescale (SPI-3). SPI values were calculated from precipitation 
data using R Studio, and monthly SPI-3 maps for the 2000–2024 period 
were generated. Pearson correlation analysis at the pixel level between 
MDIF and SPI-3 across Africa revealed high correlations of 0.72 to 0.84 
(p < 0.05) in semi-dry and dry areas such as the Sahel, the Horn of 
Africa, and Southern Africa (Figs. 3a, b), confirming that MDIF is able to 
detect precipitation-induced drought signals (Bhuyan-Erhardt et al., 
2019; Liu et al., 2021).

To further extend the validation beyond meteorological drought, 
MDIF was also correlated against the Vegetation Health Index (VHI), 
which is a combination of NDVI and LST to represent vegetation and 
thermal stress, respectively. The correlation showed even stronger cor
relations, ranging from 0.76 to 0.87 (p < 0.05), particularly over 
vegetated regions (Figs. 3c, d). This confirms that MDIF, apart from 
capturing rainfall anomalies, is equally well correlated with ecological 
drought indices.

Fig. 3. Validation of the Multivariate Drought Index Fusion (MDIF) against benchmark indices. Panels (a) and (b) show the spatial distribution and density of 
Pearson correlation coefficients between MDIF and SPI-3 (precipitation-based meteorological drought index). Panels (c) and (d) show the corresponding correlation 
analysis between MDIF and VHI (vegetation and thermal stress index). Both validations indicate strong and statistically significant correlations (p < 0.05), confirming 
that MDIF captures both meteorological and ecological drought components across Africa.
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Across vegetated regions, MDIF also exhibited strong coherence with 
observed drought occurrences, such as the 2016–2017 East African 
drought (Han et al., 2022) and the 2002–2003 southern African drought 
(Zeng et al., 2023). Spatial overlays also confirmed that drought clusters 
identified by MDIF were well aligned with historical drought impact 
zones reported by Rhein and Jansesberger, (2024). These validation 
results confirm that MDIF not only confirms meteorological drought 
indices like SPI but also offers enhanced sensitivity by incorporating 
vegetation and thermal stress components, thus producing a more uni
fied portrayal of drought.

3.2. Spatiotemporal distribution of drought conditions across Africa

The drought regimes across Africa between 2000 and 2024, as 
implied from the MDIF index, depict a very dynamic and regionally 
varying pattern of water stress. During the early 2000 s (2000–2004), 
Southern Africa always stood out as a drought hotspot as indicated in 
Fig. 4, with severe drought prevailing in more than 60 % of the subre
gion in 2001–2002, covering countries such as Namibia, Botswana, and 
South Africa. Concurrently, the Horn of Africa experienced chronic 
drought stress, while the Sahel became increasingly dry, particularly in 
its western parts. These regional droughts often propagated along a 
northeast-to-southwest axis, consistent with the dominant propagation 
pathway shown in Fig. 9.

Between 2005 and 2009, drought severity again came back over 
Southern Africa, with its worst form in 2005 when over 70 % of the 
region faced severe to extreme conditions. The Horn of Africa concur
rently faced some of its worst drought years, especially in 2006. 
Southern Africa received temporary relief in 2007, but the Horn and 
Sahel areas continued to face extensive dryness, as severe indicators of 
drought again returned in 2008–2009. These years witnessed the 
consolidation of the Horn of Africa as a persistent drought hot spot, 
whereas the Sahel showed migrating bands of moderate to severe 
drought stress.

The period 2010–2015 registered some of the worst and most 
widespread droughts in decades. The 2010–2011 Horn of Africa drought 
covered nearly 80–90 % of the region, with the Sahel indicating sharply 
defined drought stripes in its central and eastern parts. Southern Africa 
entered another desperate drought phase in 2012–2015, culminating in 
2015 when nearly 75 % of the region was affected. These large-scale 
droughts were directionally coherent, with the vectors of propagation 
localized in the northeast-to-southwest quadrant (Fig. 9b).

From 2016 to 2023, Africa continued to experience repetitive, large- 
scale drought incidents. Southern Africa suffered from severe drought 
during the year 2016, which was a multi-year extreme event, while the 
Horn of Africa was once more engaged in a prolonged period of 
exceptional drought from 2017. This three-year interval (2017–2019) 
saw the Horn and East Africa under the continuous effect of severe to 
extreme stress, with maps showing intense red hues over large areas. 
Southern Africa experienced more varied conditions after 2017, with 
some recovery in some regions but others remaining dry, particularly in 
the far south and west. The Sahel region showed strong dryness over its 
western and central sectors in these years. The final maps for 2020–2023 
display the persistent vulnerability of the Horn of Africa, which was 
under extreme drought through 2022–2023—visually one of the most 
severe in the whole record. Southern Africa also saw persistent moderate 
to severe drought in its western and central parts, and the Sahel dis
played repeated stripes of moderate dryness.

During the whole 2000–2024 period, the Horn of Africa was the 
driest part of the continent, often affected by hard and prolonged crises, 
most notably in 2006, 2010–2011, 2017–2019, and 2022–2023 as 
shown in fig. 5. Southern Africa also experienced various large-scale 
drought episodes, including extensive multi-year periods during 
roughly 2001–2002, 2005–2006, and 2014–2017, with spillovers into 
the 2020 s. The Sahel also had high year-to-year variability, with 
alternation in intensity of drought latitudinally and longitudinally but 

often recurring.
North Africa, controlled by the Sahara Desert, consistently gave dry 

MDIF signals, characteristic of its typical hyper-arid climate rather than 
intermittent drought anomalies. Central Africa, in contrast, was rela
tively less affected by large-scale extreme drought but experienced pe
ripheral incursions of dryness during years of broader regional drought. 
Most significantly, the no clear continent-scale intensifying or dis
appearing trend of drought is apparent. Instead, a pattern emphasizes 
the complex interplay of regional climate drivers, namely ocean- 
atmospheric teleconnections and land-atmospheric feedbacks, that has 
led to a chronic susceptibility and sensational spatiotemporal variability 
of drought occurrence in Africa over the past two decades.

To facilitate simple interpretation of Fig. 5, the categories of drought 
(mild, moderate, severe, and extreme) were determined using percentile 
cutoff values of the MDIF distribution: extreme drought at or below the 
20th percentile, severe drought between the 20th and 40th percentiles, 
moderate drought between the 40th and 50th percentiles, and mild 
drought between the 50th and 60th percentiles. This percentile-based 
grouping is also in agreement with commonly employed methodolo
gies in global drought monitoring (Kogan, 1995; Hao and Singh, 2015), 
in that severity levels are directly comparable between regions and 
years. Fig. 5 therefore illustrates, for each African subregion and year, 
the proportion of land surface that falls within these standardized ranges 
of drought.

To improve the demonstration of spatial consistency and perfor
mance of the MDIF, we present comparison maps of spatial distribution 
of MDIF, VHI, and SPI-3 for typical periods of extreme drought events in 
Africa.

These maps provide visual validation of the ability of MDIF to 
reproduce the spatial area and intensity of the drought condition. Fig. 6
graphs MDIF versus VHI and SPI-3 for the 2011, 2019, and 2023 drought 
years. For each of these years, MDIF has excellent spatial correspon
dence with both indices, highlighting the 2011 Horn of Africa disaster, 
the 2019 South African drought, and the more heterogeneous 2023 
condition. There are minor spatial variations, yet MDIF always indicates 
the spatial extent and severity of drought according to both precipita
tion- and vegetation-based criteria. These graphical results reinforce the 
statistical associations and highlight MDIF’s potential in merging 
meteorological and ecological indicators of drought into a coherent and 
reliable observing paradigm. Improvement in the future is through the 
integration of soil moisture data and application of machine learning 
models for detecting nonlinear drought drivers. Overall, MDIF is a 
sound, scalable, and operational tool for observing Africa-wide 
droughts, providing more perceptive perspectives on evolving drought 
risk in the continent.

3.3. Spatiotemporal dynamics of drought movement

Spatial and temporal examination of drought propagation across 
Africa according to observed drought front density, velocity, and 
dominating direction trends reveals complex regional disparities and 
varying drought migration pathways that reflect underlying climatic 
forcing and land–atmosphere coupling.

The density map (Fig. 7a) reveals definitive drought front hotspots 
that have suffered multiple invasions of drought occurrences over the 
past two decades. Notably, southern Madagascar is one epicenter with 
the largest number of front occurrences, a maximum of 120 drought 
fronts, and during the observation period, being among the longest 
drought-affected places on the continent. This aligns with recent worst- 
case droughts that have precipitated humanitarian crises in the region. 
Similarly, north Algeria and Libya of the northern Sahel–Sahara tran
sitional zone also show high drought density, more than 100 occur
rences, and reflective of multiple drought initiation or persistence along 
this climatic boundary.

There are other regions with moderate density hotspots (30 to 80 
fronts) across east Ethiopia, north Somalia in the Horn of Africa, south 
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Fig. 4. Spatiotemporal distribution of drought severity, with reddish hues indicating drought intensity and bluish hues representing wetter conditions. This figure 
highlights persistent hotspots in the Horn of Africa and Southern Africa, as well as shifting drought patterns over the 24-year period.
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Angola, north Botswana, and mid-Sudan. These are secondary hotspots 
where drought occurrence frequencies have been considerably higher, 
pointing towards their vulnerability to monsoon failure as well as at
mospheric circulation anomalies (Han et al., 2022; Samasse et al., 2018). 
Conversely, regions such as Central Africa have low front density, which 
indicates their relative hydrological stability due to equable tropical rain 
regimes.

The average drought front rate map (Fig. 7b) reveals steep regional 
variations in the speed with which drought progresses. The highest 
spreading rates are widespread over south Angola, north Namibia, and 
south Mozambique, with initial speeds approximated to be as much as 
180 km/month. These extreme spreading rates indicate high flash 
drought susceptibility, where evapotranspiration deficits and excessive 
evapotranspiration drive swift and severe moisture stress escalation 
(Bhuyan-Erhardt et al., 2019).

Moderate rates of propagation between 75 and 125 km/month 
dominate across the Sahel’s eastern part (Chad, Sudan) and western 
Ethiopia and reflect seasonally recurring pulses of drought linked with 
monsoonal variation. Central Africa and coastal West Africa, however, 
have the lowest rates, typically below 50 km/month, as would be 
anticipated from their stable precipitation inputs and thick overlying 
vegetation cover that attenuate abrupt drought progress.

The coincidence of high drought density and high-speed propagation 
across southern Africa exposes this sub-region to both repeat and rapid- 
onset drought emergencies. The dynamic poses significant challenges to 
early warning and response systems that need to act on both chronic and 
acute drought threats.

The temporal variability of movable drought fronts in Africa is 
depicted in Fig. 8. With significant inter-annual variability of alternating 
peaks and minima associated with widespread or limited drought ac
tivity, Fig. 8a shows the number of drought fronts that occur each year. 
The impact of dominant climate modes, including ENSO, IOD, and AMO, 
which regulate rainfall and the prevalence of drought across the conti
nent, is consistent with variability. Fig. 8b presents the average yearly 
rate of drought front propagation in km/month with the same vari
ability. High-speed years are in line with rapid spreading of droughts 
under strong atmospheric forcing or parched initial conditions, while 
low-speed years indicate more localized development. Overall, the re
sults emphasize the frequency and mobility of the drought fronts and 
their dynamic time evolution.

Directional analysis (Fig. 9 a and b) confirms a strong and continuous 

northeast-to-southwest axis of drought advancement across Africa. The 
most common vector direction (0◦–45◦ sector) has over 200 observed 
fronts, which identifies this pathway as the overall trend of movement 
over the 25-year observation period. This dominant pathway suggests a 
teleconnection of drought onset in the Horn of Africa and northern Sahel 
and follow-through propagations towards central and southern Africa, 
mostly during El Niño and positive Indian Ocean Dipole (IOD) phases 
(Ogunrinde et al., 2024; Zeng et al., 2023). Secondary movement pat
terns include: Eastward dispersion (90◦), particularly evident over the 
Sahel and south Africa, relating to lateral displacements in bands of 
droughts linked with zonal wind anomalies. Southward propagation 
(180◦) with 50–75 occurrences, occurring mostly over eastern Africa, 
and Westward displacement (270◦), though less frequent (~40 occur
rences), relating to isolated east-to-west drought migration events. The 
movement of drought fronts is not random but happens in unique 
regional patterns, and There are specific regions more prone to drought 
front activity, indicating increased vulnerability. The speed of drought 
front propagation varies across the continent, impacting predictability 
and influence of drought events.

Fig. 10 shows the spatial structure of drought front centroids, with 
each representing the centroid of a drought patch. Dense clustering 
appears over the Sahel, the Horn of Africa, and Southern Africa, con
firming them to be chronic drought hotspots with frequent and extensive 
events. The Congo Basin and coastal West African regions have low 
centroid density, as would be expected from their humid settings and 
higher rainfall stability. Extended clusters, particularly from the Sahel to 
the southwest and extending across Southern Africa, highlight dominant 
corridors of drought propagation. The spatial perspective complements 
the temporal analysis by both identifying areas prone to drought and 
identifying giant drought mobility corridors across the continent.

3.4. Discussion

This article introduces a novel continental-scale monitoring system 
for mobile drought dynamics in Africa using the Multivariate Drought 
Index Fusion (MDIF). Through the integration of different remote 
sensing and climatic indicators (NDVI, LST, precipitation, SPEI, VHI) 
with principal component analysis (PCA), MDIF outperforms static as
sessments to quantify the dynamic expansion of drought fronts.

Validation confirmed MDIF’s robustness, with significant correla
tions with SPI-3 and VHI (r = 0.72–0.84 and r = 0.76–0.87, respectively, 

Fig. 5. Timeline of Major Drought Episodes Across African Regions (2000–2024). The horizontal bars represent drought severity (moderate, severe, extreme) and 
spatial extent for five sub-regions: North Africa, West Africa, Central Africa, East Africa, Southern Africa, and the Sahel. Notable events include the 2011 Horn of 
Africa extreme drought and the 2015–2017 Southern Africa multi-year crisis.
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Fig. 6. Spatial Distribution Comparison of Drought Indices for Selected Years. Maps show drought conditions across Africa for (a) 2011, (b) 2019, and (c) 2023, as 
depicted by MDIF (left column), VHI (middle column), and SPI-3 (right column). Red/orange colors indicate drier conditions, while blue/green colors indicate wetter 
conditions. The visual consistency across indices highlights MDIF’s robust performance in capturing the spatial extent and severity of drought events. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Drought Front Density and Propagation Speed Across Africa. (a) Density Map: Hotspots of recurrent drought fronts (e.g., southern Madagascar, northern 
Sahel) with counts exceeding 100 fronts. (b) Speed Map: Regional contrasts in propagation velocity, with southern Africa experiencing rapid movements (>150 km/ 
month) and Central Africa showing slower speeds (<50 km/month).

Fig. 8. Temporal Dynamics of Mobile Drought Fronts Across Africa (2000–2024). (a) Yearly count of identified mobile drought fronts, illustrating inter-annual 
variability in drought occurrence. (b) Average annual speed of mobile drought fronts (km/month), showing variations in propagation velocity over time.
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Fig. 9. Dominant Propagation Directions of Drought Fronts. Rose diagrams depict azimuthal trends in drought front movement. The dominant northeast-to- 
southwest axis (0◦–45◦) aligns with teleconnections driving drought migration, while secondary eastward (90◦) and southward (180◦) patterns reflect regional 
climatic variability.

Fig. 10. Density of Mobile Drought Front Centroids Across Africa (2000–2024). The concentration of points indicates regions with higher frequency and spatial 
extent of mobile drought events, highlighting persistent drought hotbeds and dominant propagation corridors. Each point represents the centroid of a detected 
drought patch.
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in arid areas). This reflects its capability to monitor meteorological, 
agricultural, and ecological drought simultaneously. Compared to 
rainfall indices, MDIF successfully delineated the severe 2019–2021 
Madagascar drought and accurately marked the 2016–2017 East African 
and 2002–2003 Southern African droughts, confirming with FAO (2022)
and past studies (Han et al., 2022; Zeng et al., 2023). Drought front 
centrifugal spatial density noticeably separates chronic hotspots. High
est concentration levels were observed in the Horn of Africa, the Sahel, 
and Southern Africa, with the Horn region alone recording over 100 
events on average. Such trends confirm their perennial exposure to 
dryness. MDIF’s ability to compile vegetation within regions where the 
precipitation indices are weak complements such area observation.

The response of MDIF to drought is shaped by the varying behavior 
of its input indicators across Africa’s diverse climatic zones. In hyper- 
arid regions such as North Africa, vegetation indicators like NDVI 
show limited variability, so MDIF tends to be more strongly influenced 
by meteorological components such as SPEI and precipitation. In 
contrast, in humid equatorial regions, NDVI remains relatively stable, 
and drought detection relies more on anomalies in rainfall and soil water 
balance. Semi-arid regions, including the Sahel and Southern Africa, 
exhibit strong LST responses to water stress due to rapid declines in 
evapotranspiration, making thermal indicators a dominant driver of 
MDIF variability. These regional contrasts mean that while a uniform 
percentile threshold facilitates continental comparison, it may not fully 
capture local drought severity.

Tracking analysis revealed high spatial and temporal heterogeneity 
of drought mobility. Maximum velocities were in years such as 2000, 
2003, 2008, and 2019, in correspondence with inter-annual fluctuations 
in atmospheric and land-surface conditions. Regionally, most significant 
velocities were in Southern Africa, at velocities of up to 180 km/month 
over Angola, Namibia, and Mozambique, in consistency with its flash 
drought susceptibility and high evaporative demand (Bhuyan-Erhardt 
et al., 2019; Bento et al., 2020). The Sahel had moderate rates (75–125 
km/month), which reflect its intermediate climate, while Central Africa 
displayed the lowest movement (25–50 km/month) due to more rainfall 
buffering. The moving bands seen in the Sahel reflect past drought belt 
movements associated with monsoon variability (Samasse et al., 2018). 
Directional analysis further revealed a dominant Sonoran northeast-to- 
southwest direction (Fig. 9) that implies that droughts tend to initiate 
in the Horn and Sahel and propagate into Eastern and Southern Africa. 
This is corroborated by studies linking propagation with large-scale 
teleconnections such as AMO and SOI, while the shifting drought belts 
in the Sahel align with monsoon variability (Ogunrinde et al., 2024).

The successful development and validation of the MDIF for 
continental-scale drought monitoring in Africa suggest its strong po
tential for extensibility to other regions globally. However, for optimal 
performance and accurate representation of local drought conditions, 
direct application would require careful regional calibration. This in
cludes re-deriving PCA component loadings and re-establishing 
percentile-based drought severity thresholds using historical data spe
cific to the target region. Furthermore, local validation against ground- 
based observations would be essential to confirm the adapted MDIF’s 
accuracy and reliability in diverse climatic and ecological contexts. This 
adaptability highlights the broad utility of our framework for enhancing 
global drought monitoring capabilities.

The real-time data on the speed, direction, and density of drought 
fronts provide actionable information for downstream impact fore
casting, constituting a useful supplement to traditional static maps of 
drought. This method significantly enhances capacity for early warning 
and enables transboundary management of drought, particularly where 
events blur across borders. In spite of its important contributions, this 
research has some limitations. Methodologically, although PCA effec
tively aggregates a set of indicators, it requires linearity and thus 
possibly does not capture completely nonlinear interactions, i.e., com
pound heatwave-drought effects. The application of a homogenous 60th 
percentile threshold at the continental scale, although it guarantees 

comparability, possibly does not catch local drought intensity due to the 
heterogeneity of climatic zones in Africa. For instance, the MDIF in 
hyper-arid regions is controlled by meteorological factors, and thermal 
indicators prevail in semi-arid regions. Furthermore, the minimum 
patch size of 1,000 km2 precludes localized events, and monthly tem
poral resolution can potentially miss capturing rapid-onset flash 
droughts.

Future researches should address these constraints by constructing 
adaptive thresholds calibrated by climate zones or ecosystems to 
maximize local sensitivity. Increased product frequency (e.g., dekadal 
NDVI/LST, weekly soil moisture) would improve flash drought detect
ability and more accurately estimate front speed and direction. 
Combining microwave-based soil moisture observations (e.g., SMAP, 
ESA CCI) would better represent root-zone droughts in areas with cloud 
contamination. Also, transitions into PCA-machine learning model 
integration (e.g., autoencoders, random forests) could enhance detec
tion of complex, nonlinear causes of drought. Quantifying the influence 
of leading ocean–atmosphere teleconnections (ENSO, IOD, AMO) on 
observed propagation patterns using direct correlation and regression 
analysis is one central direction of research. Finally, large-scale ground 
verification against streamflow, crop damage, and impact data is 
essential to improve the utility of MDIF for early warning applications.

4. Conclusions

This study offers a stringent spatiotemporal analysis of African 
drought variability over 2000–2024 underpinned by a novel Multivar
iate Drought Index Fusion (MDIF) technique. Combining NDVI, LST, 
precipitation, SPEI, and VHI using PCA, MDIF captures both meteoro
logical and ecological drought indices, with broader sensitivity than 
traditional single-variable ones. Validation with SPI-3 and VHI deter
mined strong correlations (r = 0.72 to 0.84 and r = 0.76 to 0.87 
respectively) in arid regions such as the Sahel, the Horn of Africa, and 
Southern Africa, which validate the framework. The outcomes deter
mine established hotspots, particularly the Horn of Africa, with recur
ring crises in 2006, 2010–2011, 2017–2019, and 2022–2023. Southern 
Africa experienced multi-annual drought events in 2001–2002, 
2005–2006, and 2014–2017, and the Sahel experienced recurring bands 
of high variability drought. The droughts progressed from northeast to 
southwest, with the fastest forward movement in Southern Africa. These 
findings align with earlier drought chronologies and confirm the use of 
the MDIF framework.

In addition to its scientific significance, MDIF has implications for 
operation in early warning, drought risk estimation, and policy 
response. The framework can guide African governments and regional 
institutions for improving readiness and adjustment towards drought 
disasters. MDIF is a robust, scalable, and operational tool for Africa-wide 
drought monitoring, which provides enhanced insights into evolving 
drought risks across the continent.

Funding.
This work was supported by the Henan International Science and 

Technology Cooperation Key Project (Grant No. 241111520700), Henan 
Department of Education’s “Double First-Class” Project (Grant No. 
760507/033) and Henan Polytechnic University Startup Foundation 
Project (Grant No. 722403/067/002).

The datasets used in this study are publicly accessible from the 
following sources:

NDVI: MODIS MOD13Q1 Version 6.1 (250 m resolution, 16-day 
composites) was sourced from NASA’s Land Processes Distributed 
Active Archive Center (LP DAAC) at https://lpdaac.usgs.gov/produ 
cts/mod13q1v061/. Monthly aggregates were generated from 16-day 
data. LST: MODIS MOD11A2 Version 6.1 (1 km resolution, 8-day com
posites) was obtained from NASA LP DAAC at https://lpdaac.usgs. 
gov/products/mod11a2v061/. Monthly means were computed from 8- 
day data. Precipitation: Climate Hazards Group InfraRed Precipitation 
with Station (CHIRPS) v2.0 (0.05◦ resolution, monthly) was acquired 
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from the CHIRPS Data Portal at https://www.chc.ucsb.edu/data/chirps. 
SPEI-3: Standardized Precipitation Evapotranspiration Index (3-month 
scale, 0.5◦ resolution) was derived from SPEIbase v2.7 at https://spei.cs 
ic.es/database.html. VHI: Vegetation Health Index (4 km resolution, 
weekly) was downloaded from NOAA STAR at https://www.star.nesdis. 
noaa.gov/smcd/emb/vci/VH/vh_browse.php and aggregated to 
monthly. Land Cover: MODIS MCD12Q1 Version 6.1 (500 m resolution) 
for non-vegetation masking was sourced from NASA LP DAAC at https: 
//lpdaac.usgs.gov/products/mcd12q1v061/.
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