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Abstract  Drought poses a significant threat to agri-
cultural productivity in Africa due to climate variabil-
ity and water scarcity. To improve drought monitor-
ing using high-resolution remote sensing data, this 
paper proposes a novel Agricultural Remote Sensing 
Drought Index (ARSDI). Imagery from Sentinel-
1(S-1), Sentinel-2 (S-2), and Landsat 8 was utilized to 
develop a drought monitoring system for 2017–2023, 
during which Egypt and Kenya experienced signifi-
cant drought events. In Kenya, particularly from 2021 
to 2023, recurrent droughts severely affected agricul-
tural output, necessitating the evaluation of ARSDI’s 
efficiency in capturing drought severity. Similarly, in 
Egypt, drought-like conditions linked to reduced Nile 

River flow and rainfall variability posed significant 
challenges. ARSDI exhibited strong correlations with 
traditional drought indicators, such as the Soil Mois-
ture Condition Index (SMCI), ranging from 0.64 to 
0.88 in Egypt and 0.74 to 0.85 in Kenya. It also cor-
related well with the Vegetation Health Index (VHI), 
with values (0.96 to 0.98) in Egypt and (0.53 to 0.98) 
in Kenya. Furthermore, ARSDI aligned with Stand-
ardized Precipitation Index (SPI), ranging (0.44 to 
0.71) in Egypt and (0.47 to 0.60) in Kenya. By inte-
grating Sentinel-1 radar data, ARSDI mitigated the 
limitations of cloud cover, providing more reliable 
vegetation monitoring. Compared to other indices, 
such as the Normalized Difference Vegetation Index 
(NDVI), ARSDI exhibited superior performance, 
particularly during the drought events 2019 in Egypt 
and 2020 in Kenya, demonstrating its robustness in 
assessing soil moisture and vegetation health.
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Introduction

One of the greatest serious natural disasters that 
affects agriculture, environmental variables, and 
socioeconomic circumstances is drought (Edoko-
ssi et  al., 2024; Elameen et  al., 2023; Jin & Zhang, 
2016; Shorachi et  al., 2022). According to Li et  al. 
(2024), a drought is a phenomenon that is defined 
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by a shortage of water caused by anomalous behav-
ior components in the hydro-climatic system, such 
as rising temperatures, dropping precipitation, and 
relative humidity. Food production levels, liveli-
hoods, and natural ecosystems in the broader Horn of 
Africa have all been negatively impacted by drought 
(Alito & Kerebih, 2024). According to Shen et  al. 
(2019), drought can take four distinct forms: hydro-
logical, agricultural, economic, and meteorological. 
A very low precipitation spell lasting several months 
or even years is known as a meteorological drought. 
Groundwater, streamflow, or total water storage that 
is lower than long-term averages results in a hydro-
logical drought. Dry conditions that result in higher 
demand than supply for specific goods are referred 
to as socioeconomic droughts (Khorrami & Gündüz, 
2022). The most difficult and poorly understood of 
these is the agricultural drought. Alkaraki and Haz-
aymeh (2023) state that when soil moisture content 
declines and crops cannot be supplied with enough 
water throughout the growing season, an agricultural 
drought occurs. This is attributable to several vari-
ables, including anomalous rainfall, rising tempera-
tures, and disruptions in normal rainfall patterns.

In order to manage water resources, mitigate 
droughts, and even ensure national food security, it is 
imperative that agricultural droughts be promptly and 
efficiently monitored (Wu et  al., 2021). For over 50 
years, researchers have developed various techniques 
and metrics to monitor and analyze droughts. These 
methodologies utilize catalyst parameters, such as 
evapotranspiration, soil moisture, temperature, pre-
cipitation, and humidity, as well as response param-
eters, such as groundwater levels, vegetation health, 
and reservoir and plant health (Afzal & Ragab, 2019). 
Data for tracking agricultural drought is gathered by 
on-site or remote sensing methods (such as satellites), 
and this data can be used to research or create drought 
indicators (Liu et  al., 2020). In light of Hayes et  al. 
(n.d.), a drought index is a numerical representation 
that may be used to determine the duration and sever-
ity of a drought by combining one or more physical 
indices. Based on the type of drought, drought indi-
ces were categorized and then separated into con-
ventional/region-specific and remote sensing cat-
egories based on the type of data used. Additionally, 
the drought indices based on remote sensing data, 
divided into simple indices including microwave, 
thermal, and optical as well as composite indices 

(Alahacoon & Edirisinghe, 2022; Holben, 1980; Felix 
N. Kogan, 1995a, 1995b). Palmer Drought Severity 
Index (PDSI) (Li & Cai, 2024; Palmer and Wayne, 
1965), Standardized Precipitation Index (SPI) (Sakel-
lariou et  al., 2024), and Standardized Precipitation 
Evapotranspiration Index (SPEI) (Dong et  al., 2023; 
Vicente-Serrano et al., 2010) are the most commonly 
used drought indices derived from site data. These 
indices, which primarily offer precise assessments 
of agricultural drought conditions in specific places, 
depend on agroclimatic stations’ in  situ readings of 
soil moisture, evapotranspiration, and precipitation. 
Nevertheless, because of their sparse distribution 
and small numbers, these agroclimatic stations lack 
the geographical representative aspect of agricultural 
drought (Hazaymeh & Hassan, 2017).

Assessment of the drought has benefited greatly 
over the past few years by the use of high-resolution 
model data and remote sensing (Edokossi et al., 2020; 
Jin et al., 2022, 2024; Najibi & Jin, 2013). Real-time 
data from the atmosphere, soil, and plants can be 
obtained using remote sensing (Kulkarni et al., 2020). 
The unique spectral properties of the canopy and soil 
surface, particularly in the thermal, shortwave infra-
red, near-infrared, and red spectral bands, serve as 
the foundation for remote sensing indices. The basic 
concept behind using remote sensing for detecting 
drought in agricultural lands is that the properties 
of soil and vegetation, including soil temperature, 
organic matter, chlorophyll, biomass, and canopy, 
may be affected by drought. According to Dalezios 
et al. (2012), this could alter their thermal and spec-
tral responses, which can be employed as markers of 
the onset of drought. Currently, most studies were 
concentrated on the creation of concepts for drought 
monitoring and indices using data from remote sens-
ing for various applications (Afshar et  al., 2021; 
Araneda-Cabrera et  al., 2021; Corbari et  al., 2024; 
Dos Santos Araujo et al., 2024; Khorrami et al., 2023; 
Khorrami & Gunduz, 2021; Li et al., 2024; Qin et al., 
2021; Sánchez et  al., 2016; Schwabe et  al., 2013; 
Shahzaman et al., 2021; Skakun et al., 2016; Tang & 
Li, 2014; Tian et  al., 2018; X. Zhang et  al., 2017a, 
2017b), such as the normalized difference vegeta-
tion index (NDVI) (Thenkabail et  al., 1994), Short-
wave Infrared Water Stress Index (SIWSI) (Fensholt 
& Sandholt, 2003), Visible and Shortwave Drought 
Index (VSDI) (Zhang et  al., 2013), Vegetation Con-
dition Index (VCI) (F.N. Kogan, 1995a, 1995b), Soil 
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Adjusted Vegetation Index (SAVI) (Huete, 1988), 
Temperature Condition Index (TCI) (Kogan, 1997), 
Normalized Difference Infrared Indexes (NDII) (Fen-
sholt & Sandholt, 2003), Vegetation Health Index 
(VHI) (Alahacoon et al., 2021; Bhuiyan et al., 2006), 
and Soil Moisture Condition Index (SMCI) (Zhang & 
Jia, 2013).

High-resolution data on the state of agricultural 
drought that is continuously captured, both geo-
graphically and temporally, is needed to address 
this increased risk of drought (Dotzler et  al., 2015). 
More and more, near-real-time, multi-temporal, and 
regional Earth observation (EO) applications using 
Sentinel-2 (S-2) sceneries are being used (Sudmanns 
et  al., 2020). The restricted availability of optical 
data resulting from cloud cover is a significant draw-
back. However, because of their ability to gather data 
concerning any weather circumstances and at night, 
Synthetic Aperture Radar (SAR) systems like Sen-
tinel-1 (S-1) may be able to significantly close these 
monitoring gaps (Felegari et  al., 2021; Kaiser et  al., 
2022). Understanding the earth’s surface’s thermal 
behavior and drought monitoring depend heavily on 
LST estimation (Pande et  al., 2024). Using Google 
Earth Engine GEE (Mullissa et al., 2021; Teluguntla 
et  al., 2018), a cloud-based platform that makes 
remote sensing data analysis and processing easier, 
is one of the efficient ways to estimate LST. Ther-
mal infrared data from sensors such as Landsat-8 is 
among the several satellite imagery options provided 
by GEE (Pande et al., 2023; Ren et al., 2021). With 
time series showing processes on the Earth’s surface, 
the increased availability of data opens up new pos-
sibilities for temporal as well as spatial data analysis 
(Urban et al., 2018).

The majority of current drought indices rely on 
coarse resolution data with a range of 250 m to 1 km, 
despite notable improvements in drought monitor-
ing. The localized subtleties of drought conditions 
are frequently missed by these intermediate to coarse 
resolution datasets, such as those from MODIS, espe-
cially in varied environments. Additionally, very lit-
tle research has been done on drought monitoring 
in Africa, a continent that is extremely susceptible 
to both water scarcity and climate variability (Atz-
berger, 2013; Brandt et al., 2016; Malakar & Hulley, 
2016; Tran et  al., 2017; Trnka et  al., 2020; Winkler 
et al., 2017). However, the fact that these integrated, 
remotely sensed indices were created and assessed for 

a particular climatic or geographic area severely lim-
its their applicability (X. Zhang et al., 2017a, 2017b). 
Generally, the indices were established across study 
areas that are limited to a single climate region. A few 
of these indices were created in a variety of settings 
spanning wide geographic areas. If specific indices 
are utilized in climate zones that differ significantly 
from those in which they were established, this geo-
graphic restriction may result in subpar performance 
(Quiring & Ganesh, 2010).

This research aims to address these gaps by devel-
oping a high-resolution Agricultural Remote Sens-
ing Drought Index (ARSDI) using S-1, S-2, and 
Landsat data by integrating multiple indices through 
Principal Component Analysis (PCA) (Arun Kumar 
et  al., 2021; Du et  al., 2013; Son et  al., 2021). This 
approach not only enhances spatial resolution but also 
offers timely and accurate drought information, which 
is essential to efficient resource management and pol-
icymaking in drought-prone regions of Africa. The 
focus on two study areas (Egypt and Kenya) dem-
onstrates the versatility and applicability of ARSDI 
across diverse environments (Jiao et al., 2019; Zhang 
& Zhou, 2015), further underscoring the need for 
high-resolution, region-specific drought monitoring 
tools in addressing the pressing challenges of climate 
change and water scarcity in Africa. The rest of this 
paper is consistent with materials and methods in the 
“Methods” section; the “Results and discussions” sec-
tion contains results, analysis, and discussions; and 
the conclusion is given in the “Conclusion” section.

Materials

Study areas

The study areas are located in Egypt and Kenya, 
inside highly agriculturally practiced regions. In 
Egypt, the area of interest is around a center point 
of 31.051°N, 30.769°E. The area largely includes 
parts of the Nile Delta and Nile Valley, surrounded 
by richly grown fields of agriculture. The area is 
arid with just 24 mm of rainfall each year; the bulk 
of it is during winter. By far, the most crucial activ-
ity in the area is in irrigated agriculture from the Nile 
River. The most common crops in this region include 
wheat, maize, rice, and cotton. Surrounding the 
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well-manured land is buildings with bare soil (Fawzy 
et al., 2021; Khater et al., 2015).

The study region in Kenya stands at a center point 
of − 0.645°S, 36.379°E, and generally, it falls within 
the central highlands and part of the Rift Valley, with 
a wide range from semi-arid to more humid condi-
tions. In this area, the yearly average of precipitation 
ranges between 500 and 1500 mm. The agricultural 
lands here are critical to Kenya’s food security. Major 
crops include maize, beans, coffee, and tea. It also 
includes the regions that are dry or semi-dry in the 
surrounding areas that suffer frequent droughts affect-
ing subsistence farming and pastoralism (Masinde, 
2015; Opiyo et  al., 2014). Both Egypt and Kenya 
were chosen as study areas for their striking vari-
ation in climatic conditions from arid irrigation-
dependent agriculture to semi-arid and humid zones, 
thus providing a varied test bed for the adaptability 

and performance of ARSDI. Figure 1 shows the land 
cover type of these study areas using GEE.

Data acquisition

In this study, drought conditions in Africa from 2017 
to 2023 have been evaluated using satellite data from 
Sentinel-1, Sentinel-2, and Landsat 8. Using Google 
Earth Engine, a potent tool for planetary-scale envi-
ronmental data research, the data was retrieved and 
preprocessed.

Data from the EU’s Copernicus program using 
Sentinel-1 synthetic aperture radar is exceptional 
since it provides high temporal density and high-res-
olution SAR satellite images for the entire world for 
the first time. With the help of the cloud-penetrating 
radar, observations can be taken virtually continu-
ously during the day and night and in almost any 

Fig. 1   Land cover types of study areas in Egypt and Kenya 
using Google Earth Engine. This map shows the distribution 
of agricultural fields, urban areas, and other land covers within 

the arid Nile Delta region of Egypt and the diverse climatic 
zones of the central highlands of Kenya
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kind of weather (Mullissa et  al., 2021). Numerous 
research (Mohseni et al., 2023; Mullissa et al., 2021; 
Nasirzadehdizaji et  al., 2021; Shorachi et  al., 2022; 
Vreugdenhil et al., 2018) have demonstrated the use-
fulness of S-1 SAR images for agricultural growth 
monitoring. S-1 has a unique opportunity to record 
crops’ drought response because of backscatter’s 
sensitivity to vegetation water content and geometry 
(Kaiser et al., 2022).

With a better temporal resolution of 5 days, the 
S-2Multispectral Instrument (MSI) comprises two 
spacecraft for Earth observation at spatial resolutions 
of 10 m, 20 m, and 60 m (Kumari & Karthikeyan, 
2023; Phiri et al., 2020). Among the publicly accessi-
ble satellite products, the maximum spatial resolution 
is 10 m. Three bands of red edge that are capable of 
capturing the rich near-infrared reflectance of plants 
is another distinctive feature of the S-2 data (Abdi, 
2020; Liu et al., 2020).

The most crucial factor in predicting and calculat-
ing soil moisture, plant drought stress, and evapotran-
spiration is the land surface temperature (LST). LST 
was estimated using temperature and emissivity sepa-
ration (TES) algorithm (Khorrami & Gunduz, 2020; 
Tao et al., 2024). The Landsat 8 satellite is fitted with 
an Operational Land Imager (OLI) and a Thermal 
Infrared Sensor (TIRS). According to Mancino et al. 
(2020) and Maulana and Bioresita (2023), Landsat 8 
includes two thermal bands (for 10 and 11) (resam-
pled to 30 m) with a spatial resolution of 100 m, nine 
spectral bands (for bands 1 to 7) with a spatial reso-
lution of 30 m, and eight panchromatic bands with a 
resolution of 15 m. This study’s remote sensing data 
features are compiled in Table 1.

Methodology

This research employs a comprehensive methodol-
ogy to develop and validate the Agricultural Remote 
Sensing Drought Index (ARSDI) using data from 
S-1, S-2, and Landsat 8. The combination of the 
soil, vegetation, and atmosphere leads to agricul-
tural drought. Therefore, when creating the ARSDI, 
this study considered a number of drought-causing 
elements. The whole procedure is constituted by 
several steps: data preparation and preprocessing in 
Google Earth Engine; compute the Novel Hybrid 
Vegetation Index by using S-1 and S-2 data to 
improve the performance of NDVI; compute in the 
third stage the following vegetation indices: Green 
Normalized Difference Vegetation Index (GNDVI), 
Soil Adjusted Vegetation Index (SAVI), Tempera-
ture Condition Index (TCI), Normalized Differ-
ence Infrared Index (NDII), and Vegetation Condi-
tion Index (VCI). In the fourth step, these indices 
are integrated using Principal Component Analysis 
(PCA). The first PCA-derived component is used 
to form the Agricultural Remote Sensing Drought 
Index (ARSDI). The fifth step was the validation of 
ARSDI against established drought indices such as 
the Vegetation Health Index (VHI), the Soil Mois-
ture Condition Index (SMCI), and Standard Precipi-
tation Index (SPI). Finally, the performance of the 
ARSDI was compared with several other drought 
indices (Normalized Difference Vegetation Index 
(NDVI), Surface Water Capacity Index (SWCI), 
Shortwave infrared Soil Moisture Index (SIMI), and 
Visible and Shortwave Drought Index (VSDI). Fig-
ure 2 illustrates the methodology steps.

Table 1   Characteristics of remote sensing datasets used in ARSDI development. This includes satellite instrument, spectral bands, 
spatial and temporal resolutions, and GEE collection

Satellite Instrument Bands Spatial resolution Temporal resolution GEE collection

Sentinel-1 SAR (C-band) VV, VH 10 m 6–12 days COPERNICUS/S1_GRD
Sentinel-2 MSI B2 (Blue), B3 (Green), 

B4 (Red), B8 (NIR), 
B11 (SWIR1), B12 
(SWIR2)

10 m (B2, B3, B4, B8), 
20 m (B11, B12)

5 days COPERNICUS/S2

Landsat 8 OLI and TIRS B 2 (Blue), B 3 (Green), 
B 4 (Red), B 5 (NIR), 
B 6 (SWIR1), B 
7 (SWIR2), B 10 
(TIRS1), B 11 (TIRS2)

30 m (OLI bands), 100 m 
(TIRS bands resampled 
to 30 m)

16 days LANDSAT/LC08/C01/
T1_SR
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Data preprocessing

Prior to integrating S-1, S-2, and Landsat-8, for the 
calculation of the HVI and the other drought-related 
indices, data compatibility was considered by 
applying certain normalizing steps (Bhogapurapu 
et al., 2022; Kaushik & Jabin, 2018; Mullissa et al., 
2021). The normalization of S-1 radar backscat-
ter coefficients was performed by transforming the 
original VV and VH in decibels (dB) into a linear 
scale, using Eq. (1). This scaling brought the radar 
data into the scale of reflectance values from optical 
sensors (Braun & Veci, 2015; Small, 2011). Later, 
all data, including radar and optical, were brought 

into a range between 0 and 1 by min–max normali-
zation. This step has ensured that the inputs fell in 
comparable ranges and had similar dynamic prop-
erties for effective integration while calculating the 
Hybrid Vegetation Index, HVI, and onwards. The 
integration of radar and optical data by applying 
such normalizing processes allowed physical con-
sistency for complete integration without losing the 
characteristics of each sensor.

However, ensuring the consistent spatial reso-
lution of S-1, S-2, and Landsat-8 datasets was 
problematic since their native resolutions differ. 

(1)Linear Value = 10(dB∕10)

Fig. 2   Workflow of the methodology for developing the Agri-
cultural Remote Sensing Drought Index (ARSDI). The pro-
cess includes data preprocessing, computation of vegetation 

indices, Principal Component Analysis (PCA) integration, and 
validation against established drought indices
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S-1 radar data have a 10-m spatial resolution, 
while S-2 optical bands have 10 m in the visible 
and near-infrared parts of the spectrum, and 20 m 
in the shortwave infrared part; Landsat-8 spectral 
bands are coarser and have a 30-m resolution. All 
datasets were then resampled to a common resolu-
tion of 10 m using nearest neighbor interpolation 
to address these discrepancies (Cao et  al., 2024; 
Palagiri & Pal, 2024; Schwartz et  al., 2022). The 
temporal resolution was homogenized to the coars-
est revisit of the datasets, using a combination of 
Landsat-8 scenes for this purpose. S-1 and S-2 
data in the 16-day window are composited by tak-
ing the average, which maintains coherence with 
minimal information gaps (Shrestha et  al., 2009; 
Zeng et al., 2021).

Novel Hybrid Vegetation Index (HVI)

We present the Novel Hybrid Vegetation Index, which 
is created by merging S-1 and S-2 data. Because HVI 
integrates optical data from S-2 and SAR data from 
S-1, it has significant advantages over the Normalized 
Difference Vegetation Index (NDVI).

While SAR data from S-1 can pierce clouds and 
offer information about vegetation water content and 
structure, optical data from S-2 is sensitive to vege-
tation changes in color and structure (Mandal et  al., 
2020; Vijayasekaran, 2019). Equation (2) introduced 
a Novel Hybrid Vegetation Index (HVI) by utilizing 
the optical bands from S-2 bands and the dual-pol 
(VV-VH) Sentinel-1 SAR data.

Near-infrared radiation (NIR) is sensitive to chlo-
rophyll in plants. High NIR levels signify robust 
and healthy plants. Red is sensitive to chlorophyll 
absorption (Liu et  al., 2020; Xue & Su, 2017). VH 
(Vertical transmit, Horizontal receive) and VV (Ver-
tical transmit, Vertical receive) represent the radar 
backscatter signal in the vertical polarization and 
horizontal polarization respectively. It is particularly 
sensitive to vegetation structure and water content 
(Chen et  al., 2020; Vreugdenhil et  al., 2018). Vali-
dation of HVI was conducted using the correlation 
coefficient with the NDVI.

(2)HVI =
(NIR + VV) − (Red + VH)

(NIR + VV) + (Red + VH)

Vegetation indices calculations

Normalized Difference Vegetation Index (NDVI)

The most used metric for tracking vegetation is the 
NDVI (Al-Quraishi et  al., 2021). Based on the plant 
structure’s ability to absorb red light and the leaf’s mes-
ophyll layers’ ability to reflect near-infrared light, the 
NDVI is calculated. The NDVI is highly impacted by 
the weather, with arid and semi-arid regions being more 
affected than other places (Sardooi et  al., 2021). An 
important measure for assessing the greenness of the 
vegetation and giving information about its condition 
is the normalized difference vegetation index or NDVI 
(De Ocampo, 2023; Huang et al., 2021). The NDVI is 
crucial for tracking vegetative stress and dynamics dur-
ing flash droughts because it allows for quick adjust-
ments to soil moisture and precipitation (Nguyen et al., 
2023). The well-known formula Eq. (3) can be used to 
compute (Afshar et al., 2021; Wu et al., 2015).

Where NIR is the near-infrared band and RED is the 
red band.

Soil Adjusted Vegetation Index (SAVI)

Spectral signatures of different forms of land cover are 
not the same as those of soil. Reflectance rises in direct 
proportion to wavelength increases in the visible and 
near-infrared regions. Nonetheless, a number of factors 
influence the rate of increase. The reflectance of soil 
can be reduced by both soil moisture and organic mate-
rials. For a variety of soil types and physiognomies, the 
relationship between near-infrared and red reflectance 
is consistent. The two values are connected and exhibit 
a linear connection with changes in the moisture con-
tent (Binte Mostafiz et  al., 2021; Konno & Homma, 
2023; Rhyma et al., 2020). For every kind of soil, there 
is a unique relationship. To take into consideration 
the impact of soil brightness in areas with a restricted 
amount of vegetation, the L coefficient (which is 
assumed in this work to be equal to 0.5) is added to 
the computation of SAVI, which is determined using 
formula Eq.  4 from NIR and RED (González-Gómez 
et al., 2022; Huete, 1988).

(3)NDVI =
(NIR − RED)

(NIR + RED)
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Normalized Difference Infrared Index (NDII)

Using ratios of various near-infrared reflectance 
(NIR) and shortwave infrared reflectance (SWIR) 
values as defined by Eq.  (5), the NDII was created 
(Fensholt & Sandholt, 2003; Mathivha & Mbatha, 
2021).

Owing to the leaf’s high absorption, the NDII’s 
shortwave infrared reflectance property, which is neg-
atively correlated with leaf water content and offers 
further details on the water that is available for veg-
etation to use in the soil, can be used to both detect 
plant water stress and measure vegetation’s water 
content (Mbatha & Xulu, 2018; Sriwongsitanon et al., 
2016).

Vegetation Condition Index (VCI)

The resulting time series of NDVI images was used 
to extract VCI. Local variations in ecosystem produc-
tivity can be tracked by the VCI derived from NDVI 
(Felix N. Kogan, 1995a, 1995b). VCI is able to more 
accurately depict how drought stress affects vegeta-
tion. According to Eq. (6) (Jiao et al., 2019; Winkler 
et al., 2017), VCI is defined as follows.

NDVIi is the pixel value of the NDVI in a par-
ticular month or year, whereas NDVI max and NDVI 
min are the absolute maximum and lowest values of 
the NDVI determined (Eq.  3) for each pixel in the 
same month or year. It provides how the environment 
affects vegetation and takes geographic variations into 
account (Qin et al., 2021; Shahzaman et al., 2021). To 
enhance VCI performance, we replace NDVI with 
HVI in Eq. (5) to be the following formula in Eq. (7).

(4)SAVI =
(NIR − RED)

(NIR + RED + L)
∗ (1 + L)

(5)NDII =
(NIR − SWIR1)

(NIR + SWIR1)

(6)VCI =
(NDVIi − NDVImin)

(NDVImax − NDVImin)

(7)VCI =
(HVIi − HVImin)

(HVImax − HVImin)

HVImax and HVImin are the absolute maximum and 
lowest values of the HVI computed (Eq. 2) for each 
pixel in the same month or year, whereas HVIi is the 
HVI pixel value for that month or year.

Temperature Condition Index (TCI)

The TCI uses LST measurements and thermal 
remote sensing technology. It has been discovered 
that LST computed using thermal infrared bands, 
from sensors like Landsat 8, offers useful infor-
mation on surface moisture conditions (Jiao et  al., 
2016). The VCI is widely used, and research indi-
cates that it can be used for keeping track of vegeta-
tion changes and agricultural dryness on a continen-
tal scale (West et al., 2019). Felix N. Kogan (1995a, 
1995b) developed the TCI utilizing an extensive 
daylight LST time series as shown in Eq.  (8) and 
monitored agricultural drought using the maximum 
and minimum variations in surface temperature.

where land surface temperature is represented by LST 
as measured by a thermal sensor, and LSTmax and LST-
min stand for the highest and lowest values of LST dur-
ing the duration of the study (Shahzaman et al., 2021).

Green Normalized Difference Vegetation Index 
(GNDVI`)

The characteristics of chlorophyll in green plants are 
accurately represented by the GNDVI (Lee et  al., 
2021). The formula in Eq. (9) (Gitelson et al., 1996; 
Song & Park, 2020) is used to determine the GNDVI.

where Green is the Green band and RED is the red 
band. A reliable indicator of how well plants is pho-
tosynthesizing is the GNDVI. Higher GNDVI values 
result from healthier plants reflecting more in the near-
infrared and less in the green. Conversely, flora that is 
stressed or unhealthy will reflect differently and have 
a lower GNDVI. This index is particularly useful in 
precision agriculture and drought monitoring (Dixon 
et al., 2021; Song & Park, 2020; Taddeo et al., 2019).

(8)TCI =
(LSTmax − LST)

(LSTmax − LSTmin)

(9)GNDVI =
(NIR − green)

(NIR + green)
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Principal Component Analysis

Principal Component Analysis (PCA) is a method of 
reducing dimensionality linearly that uses a series of 
lower-dimensional linear descriptors to cover the maxi-
mal variance of a data set (A. Farrag et al., 2020; Gaber 
et al., 2021; Migenda et al., 2024). There are local PCA 
approaches for non-linear data where the data space 
is divided into disjunctive sections, and PCA is used 
to estimate the major subspace in each region (Möller 
& Hoffmann, 2004; Olivieri, 2024). Previous research 
has effectively employed PCA-based drought indices to 
track drought episodes (Jiao et al., 2019; Tadesse et al., 
2017). From the NDII, VCI, SAVI, GNDVI, and TCI, 
the primary information is extracted using the PCA 
approach, which also removes any relevant signals. 
The ERDAS IMAGEN software environment performs 
the major component transformation. The weights of 
the indices were determined automatically through the 
process of PCA. Contributions of each index to PC1 
were derived from the eigenvector coefficients of the 
covariance matrix computed after the normalization of 
all the indices. The coefficients are considered to repre-
sent the relative importance of each index in explaining 
the variance captured by PC1 (Abdi & Williams, 2010; 
Migenda et al., 2024).

With respect to the NDII, VCI, SAVI, GNDVI, and 
TCI, the first principal component (PC1) comprises 
almost 75% of the data (Zhang et al., 2021). Hence, 
we have considered PC1 for the development of the 
ARSDI. Table 2 summarizes the calculated eigenvec-
tor coefficients for PC1.

Validation and performance assessment of ARSDI

Comparing a drought index’s temporal and spa-
tial data with other widely recognized drought 
indices is a frequently used method of validation 
(Hao & Singh, 2015; Zhou et al., 2013). ARSDI is 
validated against established drought indices such 
as the Vegetation Health Index (VHI), the Soil 

Moisture Condition Index (SMCI) and Standard 
Precipitation Index (SPI). The Vegetation Health 
Index (VHI) is one of the most commonly used 
remote sensing drought indicators (Bento et  al., 
2018; Hazaymeh et  al., 2016; Pei et  al., 2018; 
Shahzaman et al., 2021). Its definition is the sim-
ple average of two elements, the Vegetation Con-
dition Index (VCI) and the Temperature Condi-
tion Index (TCI), which are obtained from data on 
the visual and thermal bands, respectively. (Bento 
et al., 2020; Qin et al., 2021).

Since a precipitation shortfall can cause a signifi-
cant reduction in soil water content, soil moisture 
information is essential for tracking droughts (Jiao 
et  al., 2019; L. Zhang et  al., 2017a, 2017b). The 
Soil Moisture Condition index (SMCI) is one of 
the best indices for monitoring drought conditions. 
SMCI is considered to be the governing variable 
for agricultural drought (Cao et  al., 2022; Jalayer 
et  al., 2023). Like VCI, SMCI normalizes the soil 
moisture values (SM) in relation to the study period 
series’ absolute maximum (SMmax) and absolute 
minimum (SMmin)(Li et  al., 2024; Sánchez et  al., 
2016).

A region’s probability of experiencing rainfall 
over a specific time period is indicated by the 
Standardized Precipitation Index (SPI) (Liu et al., 
2021). Not only does it eliminate the temporal 
and spatial disparity of rainfall, but it also offers 
the advantages of stability and simple calcula-
tion. As noted, it is adaptive to changes in drought 
and suitable for monitoring of drought and evalu-
ation of weather conditions beyond the monthly 
scale. In this study, rainfall data between 2000 and 
2022 was accessed through NASA Prediction Of 
Worldwide Energy Resources (POWER) POWER 
| DAVe (nasa.gov) (accessed on July 5, 2024), and 
then, SPI was calculated using the SPI-6 package 
in RStudio software. SPI-6 values were computed 
for an extended period from 2000 to 2022, and 
values for the period of 2017 to 2022 were used as 
validation in our study.

The study evaluated the performance of five 
drought indices (ARSDI, NDVI (Afshar et  al., 
2021), SWCI (Chen et  al., 2020), SIMI, and VSDI 
(Zhang et al., 2013)). The correlation between Soil 
Moisture Condition Index (SMCI) (Jalayer et  al., 
2023) and the other five drought indices was calcu-
lated to evaluate the performance of each other.

Table 2   Eigenvector coefficients for PC1 obtained from veg-
etation indices, which reflect the relative contribution of TCI, 
VCI, NDII, SAVI, and GNDVI in forming ARSDI

Index TCI VCI NDII SAVI GNDVI

(Eigenvector Coef-
ficient)

0.186 0.343 0.316 0.106 0.049
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Results and discussions

Results

Vegetation indices

S-1 and S-2 data from 2017 to 2023 were used to 
calculate the HVI and NDVI time series using GEE 
for the two-study area as shown in Fig. 3. The cor-
relation coefficient was calculated to evaluate the 
effectiveness of HVI in enhancing the NDVI perfor-
mance in agricultural drought monitoring. The cor-
relation between HVI and NDVI from 2017 to 2023 
as shown in Table  3. Figure  4 shows the HVI and 
NDVI resulting images for the years of 2018, 2020, 
and 2022. Figures  5 and 6 show the time series 
charts of NDII, SAVI, GNDVI, VCI, and TCI for 
Egypt and Kenya.

ARSDI validation

In order to evaluate the precision of ARSDI, this 
study used SMCI, VHI, and SPI-6 for verification. 
Figures 7 and 8 illustrate the correlation between the 
ARSDI and SPI-6. Table  4 summarizes the correla-
tion values between ARSDI and SPI-6. The correla-
tion results between the ARSDI and SMCI, VHI were 
illustrated in Figs. 9, 10, 11, and 12. Tables 5 and 6 
summarize the correlation values between ARSDI, 
SMCI, and VHI. The resulting drought maps for 
Egypt and Kenya were illustrated in Figs. 13 and 14.

Historical drought events

The validation of the Agricultural Remote Sensing 
Drought Index (ARSDI) was conducted by comparing 
it with historical drought events in Kenya and Egypt 
from 2017 to 2023. In Kenya, significant droughts, 
particularly from 2021 to 2023 (Ayugi et  al., 2020; 
Furrer et al., 2022; King-Okumu et al., 2019; Mugabe 
et  al., 2019; Mutsotso et  al., 2018; Ochieng et  al., 
2022, 2023; Ondiko & Karanja, 2021; Price et  al., 
2022; Tanarhte et  al., 2024; Uhe et  al., 2018; Zhao 
et  al., 2021), provided a valuable reference for test-
ing ARSDI’s performance. These events, character-
ized by failed rainy seasons and extensive agricultural 
loss, allowed for the assessment of ARSDI’s correla-
tion with traditional drought indicators like the Soil 
Moisture Condition Index (SMCI) and the Vegetation 
Health Index (VHI). The ARSDI demonstrated strong 
correlations with these indices (ranging from 0.74 to 
0.85 for SMCI and 0.53 to 0.98 for VHI in Kenya), 
aligning closely with observed drought impacts dur-
ing this period.

The correlation between Soil Moisture Con-
dition Index (SMCI) and the other drought indi-
ces was calculated to assess how well the drought 
indexes performed. Tables  7 and 8 summarize the 

Fig. 3   Time series of HVI and NDVI for Egypt and Kenya, 
2017–2023: This chart reflects the annual trend of HVI and 
NDVI and reflects that HVI was performing better in drought 
monitoring

Table 3   Correlation coefficients between HVI and NDVI for Egypt and Kenya (2017–2023) with P-value < 0.05. It shows the better 
performance of HVI in monitoring vegetation health and drought severity

Year 2017 2018 2019 2020 2021 2022 2023
Study area

Egypt 0.90 0.93 0.95 0.95 0.94 0.93 0.93
Kenya 0.79 0.82 0.89 0.92 0.86 0.85 0.85
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correlation values between SMCI and ARSDI, 
NDVI, SWCI, SIMI and VSDI.

Similarly, in Egypt, ARSDI was validated against 
the water stress periods associated with fluctuat-
ing Nile River flows and rainfall variability (Abu-
hashim et al., 2021; Younes & Bakry, 2022), where 
it showed high correlation with SMCI (ranging 
from 0.64 to 0.88) and VHI (0.96 to 0.98). The 
accuracy of ARSDI in both countries was further 
reinforced by its alignment with the Standardized 
Precipitation Index (SPI), which ranged from 0.44 
to 0.71 in Egypt and from 0.47 to 0.60 in Kenya. 
The integration of Sentinel-1 radar data into ARSDI 
allowed for more reliable vegetation and moisture 
monitoring, especially in regions affected by cloud 
cover. These validations, based on actual drought 
events, highlight the robustness of ARSDI in effec-
tively capturing and analyzing drought severity in 
diverse environments.

Analysis of drought results

The high correlation of HVI with NDVI demonstrates 
a constant relationship over the years; hence, HVI 
would adequately replace NDVI in monitoring veg-
etation. Moreover, HVI has other advantages in that 

it makes use of S-1 SAR information; hence, data can 
be acquired at any time, either during the day or night 
and in any weather. It will, hence, promote more fre-
quent and reliable plant monitoring, especially in 
areas with constant cloud cover that may hamper the 
performance of optical sensors like S-2. Therefore, 
the inclusion of radar data in HVI enhances reliability 
and accuracy in plant assessment, wherein it is always 
considered a valuable resource in carrying out rigor-
ous drought surveillance or plant health assessment.

From the results, it is evident that ARSDI performs 
well in capturing drought conditions and vegetation 
health because it consistently shows a strong relation-
ship with VHI in both Egypt and Kenya. In Egypt, 
this figure is above 0.96 for all time. Furthermore, 
these high correlation values in Kenya, especially 
between 2019 and 2022, support the accuracy of the 
ARSDI. The correlation between ARSDI and SPI 
varies across years and places from weak to substan-
tial. In Egypt, there is a correlation from 0.44 to 0.71, 
while Kenya’s correlation ranges from 0.47 to 0.60. 
These disparities suggest how complicated droughts 
are and how many weather elements influence SPI. 
Between 2018 and 2022 during the entire 6-year 
period, there was always a high correlation between 
ARSDI and SMCI, as shown by values ranging from 

Fig. 4   Spatial distribution 
maps of HVI versus NDVI 
at Egypt and Kenya-in 
selected years 2018, 2020, 
and 2022. HVI seems to 
perform better in portray-
ing vegetation health due to 
specific climate conditions 
in a more detailed manner 
than NDVI



	 Environ Monit Assess         (2025) 197:242   242   Page 12 of 28

Vol:. (1234567890)

0.96 to 0.98 throughout Egypt. This indicates that the 
ARSDI can be used as a reliable index of agricultural 
drought related to soil moisture, specifically on varia-
tions regarding soil moisture content in a country like 
Egypt. This is due to the fact that Kenya has higher 
variability in its correlation coefficients, which range 
from 0.53 to 0.94 between the years of 2017 and 
2019. The P-value is less than 0.05, indicating that 
our results are statistically significant.

The rise of the correlation line showing a spike 
at around 2021 with a value of almost one (0.96) 
showed that ARSDI is more efficient in representing 
vegetation health changes over time. However, this 
still indicates a strong relationship even if it slightly 
decreased to about 0.93 in 2022, indicating the stabil-
ity of the ARSDI model when it comes to characteriz-
ing soil moisture for Kenya situations. Different types 
of soils, land use systems, and climatic factors could 
account for the uneven distribution of correlation 

values between Egypt and Kenya respectively. Nev-
ertheless, these high overall correlations indicate that 
ARSDI is an effective tool for assessing soil moisture 
content under extreme drought conditions across dif-
ferent contextual settings.

The efficacy of the ARSADI can be determined 
by comparing its performance against other indices 
such as NDVI, SWCI, SIMI, and VSDI. In Egypt, the 
ARSDI and SMCI show a strong connection in 2019 
and 2020 with correlations of 0.88 and 0.85, respec-
tively. These results demonstrate the association 
between ARSDI and drought severity and ARSDI’s 
efficiency in obtaining the drought magnitude data as 
it is superior in the dryness measurement area. The 
packaged ARSDI quality is also shown by the strength 
of the relationship of ARSDI with SMCI, which is 
generally higher than that of SWCI, SIMI, and VSDI. 
In 2022, the correlation marginally decreases to 0.64, 
yet it is still at a competitive level, which is a sign 

Fig. 5   Time series chart of NDII, SAVI, GNDVI, VCI, and TCI for Egypt: 2017–2023; these trends are based on different vegetation 
and temperature indices that show seasonal and yearly variability in reaction to climatic conditions
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that it can adjust to the new weather parameters. The 
holistic approach of the NDVI makes it a traditional 
and the most effective predictor in agriculture as it 
shows significant correlations with SMCI, which are 
commonly adjacent to ARSDI. However, when one 
comes critically to it, ARSDI is a superior investment 
due to the fact that it includes in the model the mixing 
of the principal components PCA, and hence, it may 
give an explanation why it brings catchy results in 
specific years. ARSDI and SMCI accounted for 0.81 
and 0.85 in the years 2019 and 2020 respectively. In 
Kenya, ARSDI and the soil moisture content index, 
SMCI display strong relationships again. The consist-
ent performance of the index in various settings is a 
profound illustration of how good it is. Correlations 
in Kenya, which is a region distinguished by different 

soils and climates, may show unreliable relations 
sometimes. NDVI, as a good indicator, is still not 
necessarily enough to reflect the different changes in 
the soil moisture over time.

This conclusion comes from the parallel relationship 
between the vegetation index and the soil moisture in 
2019 and the discrepancies in the following years.

The ARSDI seems to be the index which actu-
ally gives a more comprehensive picture in terms of 
evaluating drought conditions since we can observe 
that it consistently keeps its strength in the following 
years. While ARSDI generally performs better than 
SWCI, SWCI has moderate to high correlations in 
both regions. This suggests that the integrated method 
of ARSDI provides a more accurate and detailed 
description of soil moisture conditions.

Fig. 6   Time series chart of NDII, SAVI, GNDVI, VCI, and TCI for Kenya: 2017–2023; these trends are based on different vegeta-
tion and temperature indices that show seasonal and yearly variability in reaction to climatic conditions
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To classify the drought severity levels of the Agri-
cultural Remote Sensing Drought Index (ARSDI), we 
adopted a standardized approach similar to widely 
used indices like the Standardized Precipitation Index 
(SPI) and Standardized Precipitation Evapotranspira-
tion Index (SPEI).

Specifically, ARSDI values were standardized by 
calculating their deviation from the long-term mean 

and expressing these deviations in terms of standard 
deviations. Drought severity was then classified as 
follows: very wet for ARSDI values between + 1.50 
and + 2.00 standard deviations. Mild wet ARSDI val-
ues are between + 0.50 and + 1.50 standard deviations. 
No drought for ARSDI values within + 0.5 and − 0.5, 
mild drought between − 0.5 and − 1.5, severe drought 
between − 1.5 and − 2.0. This method allows ARSDI 

Fig. 7   Correlation of ARSDI with SPI-6 in Egypt during 2017–2022. This scatterplot indicates the statistical relation of ARSDI and 
Standardized Precipitation Index SPI for a period of six months
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Fig. 8   Correlation of ARSDI with SPI-6 in Kenya during 2017–2022. This scatterplot indicates the statistical relation of ARSDI and 
Standardized Precipitation Index SPI for a period of six months

Table 4   Values of correlation coefficient between ARSDI and SPI-6 for Egypt and Kenya during 2017–2022. Results confirm the 
validity of ARSDI in reflecting precipitation anomalies at different time scales

Year 2017 2018 2019 2020 2021 2022
Study area

Egypt 0.71 0.44 0.62 0.59 0.44 0.46
Kenya 0.58 0.53 0.47 0.58 0.58 0.60
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to capture region-specific drought conditions while 
accounting for natural variability in the environmen-
tal factors influencing drought. The classification 
was validated by correlating ARSDI with established 
drought indices such as the Vegetation Health Index 
(VHI), Soil Moisture Condition Index (SMCI), and 
Standardized Precipitation Index (SPI), following the 
approach used in the U.S. Drought Monitor and other 
multi-indicator frameworks (Bayissa et al., 2018; Hao 
& Singh, 2015; Mishra & Singh, 2010; Vicente-Ser-
rano et al., 2010).

Discussion

The results of the study make a case for the Agri-
cultural Remote Sensing Drought Index as a prac-
tical tool in producing correct and relatively suc-
cessful drought monitoring. In this regard, ARSDI 
is derived by fusing S-1, S-2, and Landsat 8 data 
to offer an integrated drought estimate for various 
geographies and climatic variables, with a focus on 
Egypt and Kenya. Within the period from 2017 to 
2022, the values of the correlation coefficient are 
within 0.9 to 0.95 between the Hybrid Vegetation 
Index and the Normalized Difference Vegetation 
Index. This clearly portrays that HVI can be used as 
a very good substitute for NDVI. In measuring HVI, 
S-1 uses radar data, which is totally independent of 

cloud cover, hence enhancing accuracy in vegetation 
monitoring. This suggests that, across regions that are 
frequently covered by cloud, increased record avail-
ability through stepped forward may be an additional 
advantage of adopting HVI for drought monitor-
ing. Principal Component Analysis was next applied 
to determine the ARSDI after the VCI, TCI, NDII, 
SAVI, and GNDVI values for the study areas had 
been computed. This index is designed to extract the 
most important information from the input indices in 
order to give an overall view of the situation regard-
ing drought.

The significant relationships that ARSDI has 
with the traditional drought indicators (VHI, SMCI, 
and SPI) provide more evidence of its effectiveness. 
Egypt’s ARSDI showed correlations with VHI of 
0.96 to 0.97 and SPI of 0.71 to 0.46 between 2017 
and 2022. Kenya’s ARSDI is similarly associated 
with SPI by 0.58 to 0.6 and with VHI by 0.53 to 
0.93 over the same time period. These results dem-
onstrate the ARSDI’s robustness in identifying 
changes in soil moisture and vegetative health, two 
essential components of accurate drought monitor-
ing. Compared with other indices such as NDVI, 
SIMI, SWCI, and VSDI, ARSDI performed best in 
both study areas. In Egypt, SMCI was more corre-
lated with ARSDI (0.77–0.82) than for NDVI (0.76 
to 0.84), SWCI (0.56 to 0.69), SIMI (0.19 to 0.33), 

Fig. 9   Correlation between ARSDI and SMCI over Egypt for 2017–2022 with P-value < 0.05. Strong positive values are indicative 
of the reliability of ARSDI in capturing the variability of soil moisture under drought conditions
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and VSDI (0.28 to 0.41) between 2019 and 2023. 
Similarly, Kenya had better correlations for ARSDI 
with SMCI (0.74–0.85) compared to those of NDVI 
(0.54–0.78), SWCI (0.52–0.83), SIMI (0.18–0.4), 
and VSDI (0.18–0.61) between the years from 2019 
to 2023. These comparisons underline the strengths 
of using a complex index like ARSDI that com-
bines different data sources, thus giving detailed 

information about drought conditions. Develop-
ment and validation of ARSDI have been seen as 
an important advancement in monitoring droughts 
quantitatively. The use of virtual high-resolution 
data through PCA combining S-1, S-2, and landsat8 
helps provide timely information on drought. When 
it comes to Africa, where water scarcity is a con-
cern together with agriculture, this could be critical.

Fig. 10   Correlation between ARSDI and SMCI over Kenya for 2017–2022 with P-value < 0.05. Strong positive values are indicative 
of the reliability of ARSDI in capturing the variability of soil moisture under drought conditions

Fig. 11   Correlation between ARSDI and VHI over Egypt during the years 2017–2022 with P-value < 0.05: these continuous high 
correlations prove ARSDI performance to identify the vegetation health within the arid agriculture zones
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ARSDI is indeed very adaptable for regions with 
different climatic and agricultural practices since it 
uses globally available remote sensing datasets and 
a very flexible methodology. Employment of PCA 
dynamically changes the weights of the input indices 
according to their statistical significance, enabling 
ARSDI to take into consideration regional variation 
in vegetation, soil, and climate. Furthermore, the 
involved indices in ARSDI are universally applicable 
for monitoring drought stress, and the method allows 

for calibration and validation to be done with region-
specific ground-truth data.

Minor modifications to this methodology may thus 
allow its application in regions of varied environmen-
tal conditions; for instance, a mere readjustment in 
weights of PCA or an addition to more evapotranspi-
ration or water body condition-representative indices.

In some cases, ARSDI’s performance was com-
parable or slightly inferior to classical indices 
such as NDVI and SPI, especially in transitions 

Table 5   Correlation values between ARSDI and SMCI for Egypt and Kenya (2017–2023). These values highlight the strength of 
ARSDI in capturing soil moisture variability during drought events

Year 2017 2018 2019 2020 2021 2022 2023
Study area

Egypt 0.51 0.77 0.88 0.85 0.80 0.64 0.82
Kenya 0.75 0.73 0.81 0.85 0.74 0.83 0.74

Table 6   The ARSDI versus VHI for Egypt and Kenya during 2017–2023. This strong correlation illustrates the capability of the 
ARSDI in vegetation health monitoring due to drought

Year 2017 2018 2019 2020 2021 2022 2023
Study area

Egypt 0.96 0.98 0.98 0.97 0.98 0.97 0.98
Kenya 0.54 0.74 0.94 0.91 0.96 0.93 0.98

Fig. 12   Correlation between ARSDI and VHI over Kenya during the years 2017–2022 with P-value < 0.05: these continuous high 
correlations prove ARSDI performance to identify the vegetation health within the arid agriculture zones
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from extreme weather events in a short period of 
time, for example, from floods to droughts. Those 
were linked to the mismatch in temporal resolu-
tion of input datasets and the compositing nature of 
ARSDI, where specific responses may be diluted by 
such compositing.

The ability of ARSDI to integrate various envi-
ronmental parameters leads to comprehensive under-
standing of drought conditions, thus informing better 
resource management decisions including policymak-
ing. ARSDI has indeed shown good performance, but 

further research is required to make it more precise and 
effective. Expanding the validation to include other 
regions with diverse climatic profiles may aid in evalu-
ating its generalization ability. Additionally, the accu-
racy of this index and its suitability could be improved 
by including such other relevant data sources as socio-
economic variables and measurements of the moisture 
content of soil in the field. For example, the use of 
machine learning methods in optimizing multi-source 
integration and improving forecasting capabilities can 
be explored in future investigations for ARSDI.

Fig. 13   ARSDI-based drought severity maps for Egypt over 2017–2023. This is a visual presentation of annual drought impacts 
across the Nile Delta and Valley
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Conclusion

The Agricultural Remote Sensing Drought Index 
(ARSDI) is an innovation that has emerged from the 
scheme that employs data from S-1, S-2, and Landsat 
8, stretching from 2017 to 2023, whose version has 
been validated. This assessment has been reached by 
combining different drought-related indices by Prin-
cipal Component Analysis (PCA) and the subsequent 
ARSDI generations, which offer a possibly extensive 

view of drought conditions. The tool has undergone 
extensive examination in Egypt and Kenya, showing 
positive correlations with traditional approaches to 
drought, like the Vegetation Health Index (VHI), Soil 
moisture condition index (SMCI), and the Standard-
ized Precipitation Index (SPI). The research revealed 
that the ARSDI index is always better than all other 
reference indices such as NDVI, SWCI, SIMI, and 
VSDI, which are completely insensitive to the situ-
ation. Furthermore, one of the greatest strengths of 

Fig. 14   ARSDI-based drought severity maps for Kenya over 2017–2023. The spatial patterns show the intensity and extent of 
drought across diverse agroecological zones
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ARSDI is its near-perfect correlation with NDVI. For 
instance, there is a high level of correlation between 
NDVI and ARSDI (R = 0.9 to 0.95) but at the same 
time, the high degree in both Egypt and Kenya (the 
range of correlations is from 0.71 to 0.46 for SPI and 
0.96 to 0.97 for VHI in Egypt, and from 0.58 to 0.6 
for SPI and 0.53 to 0.93 for VHI in Kenya) become 
evidence to the immunity and stability of ARSDI. 
The implications of this study pointed towards the 
advantages of utilizing high-resolution, multi-sensor 
data for drought monitoring. It is proved that the inte-
gration of Sentinel-1 radar data, which is not affected 
by cloudy weather, into the ARSDI enhances the 
performance of the index, which makes it a particu-
larly useful tool in areas prone to cloud formation. 
The strength of ARSDI to bring together the different 
environmental parameters guarantees a detailed and 
timely understanding of the status of drought, which 
is ace in effective resource management in the poli-
cymaking process. Besides, the excellent efficacy of 
ARSDI as opposed to traditional indexes implies its 
wider usage in a multitude of different situations. This 
is mainly true in areas like Africa, for example, where 

such issues as water shortage and agricultural produc-
tion are most critical. The research also highlights 
the necessity for further studies in order to revise the 
index, approve the validity of it through various cli-
matic regions, and search for the application of more 
datasets and machine learning algorithms to forecast 
its predictive power. The ARSDI may be regarded as 
an excellent breakthrough in the field of drought man-
agement as it presents a trustworthy, high-resolution 
instrument for drought evaluation. Its production and 
verification represent the direction we must go in to 
make our agriculture more resistant to drought and 
manage our resources in risky areas, specifically deal-
ing with problems of climate change and scarcity of 
water.
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